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The human figure exhibits complex and rich dynamic behavior that is 
both nonlinear and time-varying. Effective models of human dynamics 
can be learned from motion capture data using switching linear dynamic 
system (SLDS) models. We present results for human motion synthe­
sis, classification, and visual tracking using learned SLDS models. Since 
exact inference in SLDS is intractable, we present three approximate in­
ference algorithms and compare their performance. In particular, a new 
variational inference algorithm is obtained by casting the SLDS model 
as a Dynamic Bayesian Network. Classification experiments show the 
superiority of SLDS over conventional HMM's for our problem domain. 

1 Introduction 

The human figure exhibits complex and rich dynamic behavior. Dynamics are essential to 
the classification of human motion (e.g. gesture recognition) as well as to the synthesis of 
realistic figure motion for computer graphics. In visual tracking applications, dynamics can 
provide a powerful cue in the presence of occlusions and measurement noise. Although the 
use of kinematic models in figure motion analysis is now commonplace, dynamic models 
have received relatively little attention. The kinematics of the figure specify its degrees 
of freedom (e.g. joint angles and torso pose) and define a state space. A stochastic dy­
namic model imposes additional structure on the state space by specifying a probability 
distribution over state trajectories. 

We are interested in learning dynamic models from motion capture data, which provides a 
training corpus of observed state space trajectories. Previous work by a number of authors 
has applied Hidden Markov Models (HMMs) to this problem. More recently, switching 
linear dynamic system (SLDS) models have been studied in [5, 12]. In SLDS models, the 
Markov process controls an underlying linear dynamic system, rather than a fixed Gaussian 
measurement model. l By mapping discrete hidden states to piecewise linear measurement 
models, the SLDS framework has potentially greater descriptive power than an HMM. Off­
setting this advantage is the fact that exact inference in SLDS is intractable. Approximate 
inference algorithms are required, which in turn complicates SLDS learning. 

In this paper we present a framework for SLDS learning and apply it to figure motion mod­
eling. We derive three different approximate inference schemes: Viterbi [13], variational, 
and GPB2 [1]. We apply learned motion models to three tasks: classification, motion syn­
thesis, and visual tracking. Our results include an empirical comparison between SLDS 

I SLDS models are sometimes referred to as jump-linear or conditional Gaussian models, and have 
been studied in the controls and econometrics literatures. 
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(a) SLDS as a Bayesian net. (b) Factorization of SLDS. 

Figure 1: (a) SLDS model as Dynamic Bayesian Network. s is discrete switch state, x is continuous 
state, and y is its observation. (b) Factorization of SLDS into decoupled HMM and LDS. 

and HMM models on classification and one-step ahead prediction tasks. The SLDS model 
class consistently outperforms standard HMMs even on fairly simple motion sequences. 

Our results suggest that SLDS models are a promising tool for figure motion analysis, 
and could play a key role in applications such as gesture recognition, visual surveillance, 
and computer animation. In addition, this paper provides a summary of approximate in­
ference techniques which is lacking in the previous literature on SLDS. Furthermore, our 
variational inference algorithm is novel, and it provides another example of the benefit of 
interpreting classical statistical models as (mixed-state) graphical models. 

2 Switching Linear Dynamic System Model 

A switching linear dynamic system (SLDS) model describes the dynamics of a complex, 
nonlinear physical process by switching among a set of linear dynamic models over time. 
The system can be described using the following set of state-space equations, 

Xt+1 = A(st+dxt + Vt+1(St+1), Yt = eXt + Wt, Pr(st+1 = ils t = j) = II(i,j), 

for the plant and the switching model. The meaning of the variables is as follows: X t E lRN 
denotes the hidden state of the LDS, and Vt is the state noise process. Similarly, Yt E lRM 
is the observed measurement and Wt is the measurement noise. Parameters A and e are the 
typical LDS parameters: the state transition matrix and the observation matrix, respectively. 
We assumed that the LDS models a Gauss-Markov process with i.i.d. Gaussian noise pro­
cesses Vt (St) '" N(O, Q(St)). The switching model is a discrete first order Markov process 
with state variables St from a set of S states. The switching model is defined with the state 
transition matrix II and an initial state distribution 71"0. The LDS and switching process are 
coupled due to the dependence of the LDS parameters A and Q on the switching state S t : 
A(st = i) = Ai, Q(St = i) = Qi. 

The complex state space representation is equivalently depicted by the DBN depen­
dency graph in Figure lea). The dependency graph implies that the joint distribution 
P(YT, XT, ST) over the variables of the SLDS can be written as 

Pr(so) TI;~l Pr(st ISt-dPr(xo Iso) TI;=-;.l Pr(xt IXt-l, St) TI;=~l Pr(Yt IXt), (1) 

where YT, XT, and ST denote the sequences (of length T) of observations and hidden 
state variables. From the Gauss-Markov assumption on the LDS and the Markov switching 
assumption, we can expand Equation I into the parameterized joint pdf of the SLDS of 
duration T. 

Learning in complex DBNs can be cast as ML learning in general Bayesian networks. 
The generalized EM algorithm can then be used to find optimal values of DBN parameters 
{A, e, Q, R, II, 7I"0}. Inference, which is addressed in the next section, is the most complex 



step in SLDS learning. Given the sufficient statistics from the inference phase, the param­
eter update equations in the maximization (M) step are easily obtained by maximizing the 
expected log of Equation 1 with respect to the LDS and Me parameters (see [13]). 

3 Inference in SLDS 

The goal of inference in complex DBNs is to estimate the posterior P(XT, STIYT). If there 
were no switching dynamics, the inference would be straightforward - we could infer X T 

from YT using LDS inference. However, the presence of switching dynamics makes exact 
inference exponentially hard, as the distribution of the system state at time t is a mixture 
of st Gaussians. Tractable, approximate inference algorithms are therefore required. We 
describe three methods: Viterbi, variational, and generalized Pseudo Bayesian. 

3.1 Approximate Viterbi Inference 

Viterbi approximation approach finds the most likely sequence of switching states Sf for 
a given observation sequence YT. Namely, the desired posterior P(XT,STIYT) is approx­
imated by its mode Pr(XTISf,YT). It is well known how to apply Viterbi inference to 
discrete state hidden Markov models and continuous state Gauss-Markov models. Here we 
review an algorithm for approximate Viterbi inference in SLDSs presented in [13]. 

We have shown in [13] that one can use a recursive procedure to find the best switching 
sequence Sf = argmaxsT Pr(STIYT). In the heart of this recursion lays the approxi­
mation of the partial probability of the swiching sequence and observations up to time t, 
Jt,i = maxs' _l Pr (St-l, St = i, Yt) R:J 

maxdPr(Ytlst =i,St-l =j,S;_2(j),Yt-l)Pr(St =ilst - 1 =j)Jt-1,j}. (2) 

The two scaling components are the likelihood associated with the transition i ~ j from t 
to t - 1, and the probability of discrete SLDS switching from j to i. They have the notion 
of a "transition probability" and we denote them together by J tlt-l ,i,j 

The likelihood term can easily be found using Kalman updates, concurent with the recur­
sion of Equation 2. See [13] for details. The Viterbi inference algorithm can now be written 

Initialize LDS state estimates XOI-l,i and E01-1,i ; 
Initialize JO ,i ; 
fort=l:T-l 

fori=l:S 
forj=l:S 

end 

Predict and filter LDS state estimates xt It ,i,j and E tlt ,i ,j; 
Find j -+ i "transition probability" J tit - 1. i ,j ; 

Find best transition '!f;t - 1 i into state i; 
Update sequence probabilities J t • i and LDS slate estimates Xtl t , i and E t It ,i; 

end 
end 
Find "best" final switching state i;'_ l and backtrace the best switching sequence S;' ; 
Do RTS smoothing for S = s.;.. ; 

3.2 Approximate Variational Inference 

A general structured variational inference technique for Bayesian networks is described 
in [8]. Namely, an 1]-parameterized distribution Q(1]) is constructed which is "close" to the 
desired conditional distribution P but is computionally feasible. In our case we define Q 
by decoupling the switching and LDS portions of SLDS as shown in Figure l(b). The orig­
inal distribution is factorized into two independent distributions, a Hidden Markov Model 
(HMM) Q s with variational parameters {qo, ... , qT-l} and a time-varying LDS Q x with 
variational parameters {xo,Ao, ... , AT-1,Qo, ... ,QT-d. 



The optimal values of the variational parameters TJ are obtained by minimizing the KL­
divergence w.r.t. TJ. For example, we arrive at the following optimal variational parameters: 

Ot1 = 
At = 

log qt( i) = 

To obtain the terms Pr(St) = Pr(stlqo, ... , qT-t) we use the inference in the HMM with 
output "probabilities" qt . Similarly, to obtain (Xt) = E[XtIYT] we perform LDS inference 
in the decoupled time-varying LDS via RTS smoothing. Equation 3 together with the 
inference solutions in the decoupled models form a set of fixed-point equations. Solution 
of this fixed-point set is a tractable approximation to the intractable inference of the fully 
coupled SLDS. The variational inference algorithm for fully coupled SLDSs can now be 
summarized as: 

error = 00 ; 
Initialize P r CSt) ; 
while (KL di vergence> maxError) 

Find Qt, At, XO [TOm PrCSt) (Eq. 3); 

Estimate ( Xt) I (Xt Xt ') and ( Xt Xt - 1') from Yt using time-varying LDS inference; 

Find qt from (xt) I (xt Xt') and (XtXt_l') (Eq. 3); 

Estimate Pr (St) from qt using HMM inference. 
end 

Variational parameters in Equation 3 have intuitive interpretation. LDS parameters At and 
Ot1 define the best unimodal representation of the corresponding switching system and 
are, roughly, averages of original parameters weighted by a best estimates of the switching 
states P(St). HMM variational paremeters log qt, on the other hand, measure the agreement 
of each individual LDS with the data. 

3.3 Approximate Generalized Pseudo Bayesian Inference 

The Generalized Psuedo Bayesian [1, 9] (GPB) approximation scheme is based on the 
general idea of "collapsing" a mixture of Mt Gaussians onto a mixture of Mr Gaussians, 
where r < t (see [12] for a detailed review). While there are several variations on this idea, 
our focus is the GPB2 algorithm, which maintains a mixture of M 2 Gaussians over time 
and can be reformulated to include smoothing as well as filtering. 

GPB2 is closely related to the Viterbi approximation of Section 3.1. Instead of picking the 
most likely previous switching state j, we collapse the S Gaussians (one for each possible 
value of j) down into a single Gaussian. Namely, the state at time t is obtained as X tlt,i = 
Lj Xtlt, i, jPr(St-l = jiSt = i, Yt) . 

Smoothing in GPB2 is unfortunately a more involved process that includes several addi­
tional approximations. Details of this can be found in [12] . Effectively, an RTS smoother 
can be constructed when an assumption is made that decouples the MC model from the 
LDS when smoothing the MC states. Together with filtering this results in the following 
GPB2 algorithm pseudo code 



Initialize LDS state estimates x 01-1, i and Eo 1_ I, i; 
Initialize Pr(sQ = il - 1) = .. (i); 
fort=1:T-1 

end 

fori=1:8 
forj=1:8 

end 

Predict and filter LDS state estimates Xtl t ,i,i ' Etl t, i,j ; 
Find switching state distributions Prest = ilYt) , Pr(St-l = jist = i, Yt); 
Collapse Xtlt,i,j ' Etlt,i,j to Xtlt,i , Etlt,i; 

Collapse Xtlt,i and Etlt,i to Xtlt and E tlt ; 
end 

Do GPB2 smoothing; 

The inference process of GPB2 is more involved than those of the Viterbi or the variational 
approximation. Unlike Viterbi, GPB2 provides soft estimates of switching states at each 
time t. Like Viterbi GPB2 is a local approximation scheme and as such does not guarantee 
global optimality inherent in the variational approximation. Some recent work (see [3]) on 
this type of local approximation in general DBN s has emerged that provides conditions for 
it to be globally optimal. 

4 Previous Work 

SLDS models and their equivalents have been studied in statistics, time-series modeling, 
and target tracking since early 1970's. See [13,12] for a review. Ghahramani [6] introduced 
a DBN-framework for learning and approximate inference in one class of SLDS models. 
His underlying model differs from ours in assuming the presence of S independent, white 
noise-driven LDSs whose measurements are selected by the Markov switching process. A 
switching framework for particle filters applied to dynamics learning is described in [2]. 
Manifold learning [7] is another approach to constraining the set of allowable trajectories 
within a high dimensional state space. An HMM-based approach is described in [4]. 

5 Experimental Results 

The data set for our experiments is a corpus of 18 sequences of six individuals perform­
ing walking and jogging. Each sequence was approximately 50 frames in duration. All 
of the motion was fronto-parallel (i.e. occured in a plane that was parallel to the camera 
plane, as in Figure 2(c).) This simplifies data acquisition and kinematic modeling, while 
self-occlusions and cluttered backgrounds make the tracking problem non-trivial. Our kine­
matic model had eight DOF's, corresponding to rotations at the knees, hip, and neck (and 
ignoring the arms). The link lengths were adjusted manually for each person. 

The first task we addressed was learning HMM and SLDS models for walking and running. 
Each of the two motion types were modeled as one, two, or four-state HMM and SLDS 
models and then combined into a single complex jog-walk model. In addition, each SLDS 
motion model was assumed to be of either the first or the second order 2. Hence, a total of 
three models (HMM, first order SLDS, and second order SLDS) were considered for each 
cardinality (one, two, or four) of the switching state. 

HMM models were initially assumed to be fully connected. Their parameters were then 
learned using the standard EM learning, initialized by k-means clustering. Learned HMM 
models were used to initialize the switching state segmentations for the SLDS models. The 
SLDS model parameters (A, Q, R, xo, II, 71"0) were then reestimated using EM. The infer­
ence) in SLDS learning was accomplished using the three approximated methods outlined 
in Section 3: Viterbi, GPB2, and variational inference. 

Results of SLDS learning using either of the three approximate inference methods did 
not produce significantly different models. This can be explained by the fact that initial 
segmentations using the HMM and the initial SLDS parameters were all very close to a 

2Second order SLDS models imply Xt = A 1 (st)Xt-1 + A 2 (st)Xt-2. 
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Figure 2: (a)-(d) show an example of classification results on mixed walk-jog sequences 
using models of different order. (e)-(g) compare constant velocity and SLDS trackers, and 
(h) shows motion synthesis. 

locally optimal solution and all three inference schemes indeed converged to the same or 
similar posteriors. 

We next addressed the classification of unknown motion sequences in order to test the rela­
tive performance of inference in HMM and SLDS. Test sequences of walking and jogging 
motion were selected randomly and spliced together using B-spline smoothing. Segmen­
tation of the resulting sequences into "walk" and "jog" regimes was accomplished using 
Viterbi inference in the HMM model and approximate Viterbi, GPB2, and variational infer­
ence under the SLDS model. Estimates of "best" switching states Pr(St) indicated which 
of the two models were considered to be the source of the corresponding motion segment. 

Figure 2(a)-(b) shows results for two representative combinations of switching state and 
linear model orders. In Figure 2(a), the top graph depicts the true sequence of jog-walk 
motions, followed by Viterbi, GPB2, variational, and HMM classifications. Each motion 
type Gog and walk) is modeled using one switching state and a second order LDS. Fig­
ure 2(b) shows the result when the switching state is increased to four. 

The accuracy of classification increases with the order of the switching states and the LDS 
model order. More interesting, however, is that the HMM model consistently yields lower 
segmentation accuracy then all of the SLDS inference schemes. This is not surprising 
since the HMM model does not impose continuity across time in the plant state space 
(x), which does indeed exist in a natural figure motion Goint angles evolve continuously 
in time.) Quantitatively, the three SLDS inference schemes produce very similar results. 
Qualitatively, GPB2 produces "soft" state estimates, while the Viterbi scheme does not. 
Variational is somewhere in-between. In terms of computational complexity, Viterbi seems 



to be the clear winner. 

Our next experiment addressed the use of learned dynamic models in visual tracking. The 
primary difficulty in visual tracking is that joint angle measurements are not readily avail­
able from a sequence of image intensities. We use image templates for each link in the 
figure model, initialized from the first video frame, to track the figure through template 
registration [11]. A conventional extended Kalman filter using a constant velocity dynamic 
model performs poorly on simple walking motion, due to pixel noise and self-occlusions, 
and fails by frame 7 as shown in Figure 2(c). We employ approximate Viterbi inference in 
SLDS as a multi-hypothesis predictor that initializes multiple local template searches in the 
image space. From the S2 multiple hypotheses Xtlt-l,i,j at each time step, we pick the best 
S hypothesis with the smallest switching cost, as determined by Equation 2. Figure 2(d)-
2(e) show the superior performance of the SLDS tracker on the same image sequence. The 
tracker is well-aligned at frame 7 and only starts to drift off by frame 20. This is not terribly 
surprising since the SLDS tracker has effectively S (extended) Kalman filters, but it is an 
encouraging result. 

The final experiment simulated walking motion by sampling from a learned SLDS walking 
model. A stick figure animation obtained by superimposing 50 frames of walking is shown 
in Figure 2(f). The discrete states used to generate the motion are plotted at the bottom of 
the figure. The synthesized walk becomes less realistic as the simulation time progresses, 
due to the lack of global constraints on the trajectories. 

6 Conclusions 

Dynamic models for human motion can be learned within a Switching Linear Dynamic 
System (SLDS) framework. We have derived three approximate inference algorithms for 
SLDS: Viterbi, GPB2, and variational. Our variational algorithm is novel in the SLDS 
domain. We show that SLDS classification performance is superior to that of HMMs. We 
demonstrate that a tracker based on SLDS is more effective than a conventional Extended 
Kalman Filter. We show synthesis of natural walking motion by sampling. In future work 
we will build more complex motion models using a much larger motion capture dataset, 
which we are currently building. We will also extend the SLDS tracker to more complex 
measurement models and complex discrete state processes (see [10] for a recent approach). 
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