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Abstract 

We model hippocampal place cells and head-direction cells by combin­
ing allothetic (visual) and idiothetic (proprioceptive) stimuli. Visual in­
put, provided by a video camera on a miniature robot, is preprocessed by 
a set of Gabor filters on 31 nodes of a log-polar retinotopic graph. Unsu­
pervised Hebbian learning is employed to incrementally build a popula­
tion of localized overlapping place fields. Place cells serve as basis func­
tions for reinforcement learning. Experimental results for goal-oriented 
navigation of a mobile robot are presented. 

1 Introduction 

In order to achieve spatial learning, both animals and artificial agents need to autonomously 
locate themselves based on available sensory information. Neurophysiological findings 
suggest the spatial self-localization of rodents is supported by place-sensitive and direction­
sensitive cells. Place cells in the rat Hippocampus provide a spatial representation in allo­
centric coordinates [1]. A place cell exhibits a high firing rate only when the animal is in a 
specific region of the environment, which defines the place field of the cell. Head-direction 
cells observed in the hippocampal formation encode the animal's allocentric heading in the 
azimuthal plane [2]. A directional cell fires maximally only when the animal's heading is 
equal to the cell's preferred direction, regardless of the orientation of the head relative to 
the body, of the rat's location, or of the animal's behavior. 

We ask two questions. (i) How do we get place fields from visual input [3]? This question 
is non-trivial given that visual input depends on the direction of gaze. We present a com­
putational model which is consistent with several neurophysiological findings concerning 
biological head-direction and place cells. Place-coding and directional sense are provided 
by two coupled neural systems, which interact with each other to form a single substrate 
for spatial navigation (Fig. lea»~ . Both systems rely on allothetic cues (e.g., visual stimuli) 
as well as idiothetic signals (e.g., proprioceptive cues) to establish stable internal represen­
tations. The resulting representation consists of overlapping place fields with properties 
similar to those of hippocampal place cells. (iiJ What's the use of place cells for navigation 
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Figure 1: (a) An overview of the entire system. Dark grey areas are involved in space representation, 
whereas light grey components form the head-direction circuit. Glossary: SnC: hypothetical snapshot 
cells, sLEC: superficial lateral entorhinal cortex, sMEC: superficial medial entorhinal cortex, DG: 
dentate gyrus, CA3-CAl: hippocampus proper, NA: nucleus accumbens, VIS: visual bearing cells, 
CAL: hypothetical calibration cells, HAV: head angular velocity cells, PSC: postsubiculum, ADN: 
anterodorsal nucleus, LMN: lateral mammillary nuclei. (b) A visual scene acquired by the robot 
during spatial learning. The image resolution is 422 x 316 pixels. The retinotopic sampling grid 
(white crosses) is employed to sample visual data by means of Gabor decomposition. Black circles 
represent maximally responding Gabor filters (the circle radius varies as a function of the filter's 
spatial frequency). 

[I]? We show that a representation by overlapping place fields is a natural "state space" for 
reinforcement learning. A direct implementation of reinforcement learning on real visual 
streams would be impossible given the high dimensionality of the visual input space. A 
place field representation extracts the low-dimensional view manifold on which efficient 
reinforcement learning is possible. 

To validate our model in real task-environment contexts, we have tested it on a Khepera 
miniature mobile robot. Visual information is supplied by an on-board video camera. Eight 
infrared sensors provide obstacle detection and measure ambient light. Idiothetic signals 
are provided by the robot's dead-reckoning system. The experimental setup consists of an 
open-field square arena of about 80 x 80 cm in a standard laboratory background (Fig. 1 (b». 

The vision-based localization problem consists of (i) detecting a convenient low­
dimensional representation of the continuous high-dimensional input space (images have 
a resolution of 422 x 316 pixels), (ii) learning the mapping function from the visual sen­
sory space to points belonging to this representation. Since our robot moves on a two­
dimensional space with a camera pointing in the direction of motion, the high-dimensional 
visual space is not uniformly filled. Rather, all input data points lie on a low-dimensional 
surface which is embedded in an Euclidean space whose dimensionality is given by the 
total number of camera pixels. This low-dimensional description of the visual space is 
referred to as view manifold [4]. 

2 Extracting the low-dimensional view manifold 

Hippocampal place fields are determined by a combination of highly-processed multimodal 
sensory stimuli (e.g., visual, auditory, olfactory, and somatosensory cues) whose mutual re­
lationships code for the animal's location [1]. Nevertheless, experiments on rodents suggest 
that vision plays an eminent role in determining place cell activity [5]. Here, we focus on 



the visual pathway, and we propose a processing in four steps. 

As a first step, we place a retinotopic sampling grid on the image (Fig. I(b». In total we 
have 31 grid points with high resolution only in a localized region of the view field (fovea), 
whereas peripheral areas are characterized by a low-resolution vision [6]. At each point of 
the grid we place 24 Gabor filters with different orientations and amplitudes. Gabor filters 
[7] provide a suitable mathematical model for biological simple cells [8]. Specifically, we 
employ a set of modified Gabor filters [9]. A modified Gabor filter Ii, tuned to orientation 
cPj and angular frequency WI = e/;l, corresponds to a Gaussian in the Log-polar frequency 
plane rather than in the frequency domain itself, and is defined by the Fourier function 

G(~ , cP ) = A · e- (/; -/;; )2 /2a~ . e- (¢-¢tl 2 / 2a; (1) 

where A is a normalization term, and (~, cP ) are coordinates in the Log-polar Fourier plane 

(~, cP) = (logll (wx, wy) 11, arctan(wy/ wx )) (2) 

A key property of the Log-polar reference frame is that translations along cP correspond to 
rotations in the image domain, while translations along ~ correspond to scaling the image. 
In our implementation, we build a set of 24 modified Gabor filters,:F = {fi(WI , cPj ) 11 :::; 
l :::; 3, 1 :::; j :::; 8}, obtained by taking 3 angular frequencies WI , W2 , W 3 , and 8 orientations 
cPI, ... , cP8 . 

As a second step, we take the magnitude of the responses of these Gabor filters for detecting 
visual properties within video streams. While the Gabor filter itself has properties related to 
simple cells, the amplitude of the complex response does not depend on the exact position 
within the receptive field and has therefore properties similar to cortical complex cells. 
Thus, given an image I( x , V), we compute the magnitude of the response of all Ji filters 
for each retinal point § 

r, (!i) ~ ( (~&(f, (X)) lUi +X))' + (~lm(f, (X)) I (.Ii +X))' Y (3) 

where if varies over the area occupied by the filter Ji in the spatial domain. 

The third step within the visual pathway of our model, consists of interpreting visual cues 
by means of neural activity. We take a population of hypothetical snapshot cells (SnC in 
Fig. I(a» one synapse downstream from the Gabor filter layer. Let k be an index over all 
K filters forming the retinotopic grid. Given a new image I, a snapshot cell S E SnC is 
created which receives afferents from all /k filters. Connections from filters Jk to cell s are 
initialized according to W s k = rk, Vk E K. If, at a later point, the robot sees an image I', 
the firing activity r s of cell s E SnC is computed by 

- - (-k L h-W skl )2 / 2a2 (4) r s - e k 

where rk are the Gabor filter responses to image I'. Eq. 4 defines a radial basis function in 
the filter space that measures the similarity of the current image to the image stored in the 
weights W sk. The width a determines the discrimination capacity of the system for visual 
scene recognition. 

As final step, we apply unsupervised Hebbian learning to achieve spatial coding one 
synapse downstream from the SnC layer (sLEC in Fig. I(a». Indeed, the snapshot cell 
activity r s defined in Eq. 4 depends on the robot's gaze direction, and does not code for a 
spatial location. In order to collect information from several gaze directions, the robot takes 
four snapshots corresponding to north, east, south, and west views at each location visited 
during exploration. To do this, it relies on the allocentric compass information provided by 
the directional system [2, 10]. For each visited location the robot creates four SnC snapshot 
cells, which are bound together to form a place cell in the sLEC layer. Thus, sLEC cell 
activity depends on a combination of several visual cues, which results in non-directional 
place fields (Fig. 2(a» [11]. 
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Figure 2: (a) A sample of spatial receptive field for a sLEC cell in our model. The lighter a region, 
the higher the cell's firing rate when the robot is in that region of the arena. (b) A typical place field 
in the CA3-CAllayer of the model. 

3 Hippocampal CAI-CA3 place field representation 

When relying on visual data only, the state space representation encoded by place cells 
does not fulfill the Markov hypothesis [12]. Indeed, distinct areas of the environment may 
provide identical visual cues and lead to singularities in the view manifold (sensory input 
aliasing). We employ idiothetic signals along with visual information in order to remove 
such singularities and solve the hidden-state problem. An extra-hippocampal path integra­
tor drives Gaussian-tuned neurons modeling self-motion information (sMEC in Fig. l(a». 
A fundamental contribution to build the sMEC idiothetic space representation comes from 
head-direction cells (projection B in Fig. l(a». As the robot moves, sMEC cell activity 
changes according to self-motion signals and to the current heading of the robot as esti­
mated by the directional system. The firing activity T m of a cell m E sMEC is given by 
Tm = exp( - (Sdr - sm)2/2(J2), where Sdr is the robot's current position estimated by 
dead-reckoning, sm is the center of the receptive field of cell m, and (J is the width of the 
Gaussian field. 

Allothetic and idiothetic representations (i.e., sLEC and sMEC place field representa­
tions, respectively) converge onto CA3-CAI regions to form a stable spatial representation 
(Fig. l(a» . On the one hand, unreliable visual data are compensated for by means of path 
integration. On the other hand, reliable visual information can calibrate the path integrator 
system and maintain the dead-reckoning error bounded over time. Correlational learning is 
applied to combine visual cues and path integration over time. CA3-CA 1 cells are recruited 
incrementally as exploration proceeds. For each new location, connections are established 
from all simultaneously active cells in sLEC and sMEC to newly recruited CA3-CA1 cells. 
Then, during the agent-environment interaction, Hebbian learning is applied to update the 
efficacy of the efferents from sLEC and sMEC to the hippocampus proper [11]. 

After learning, the CA3-CA1 space representation consists of a population of localized 
overlapping place fields (Fig. 2(b» covering the two-dimensional workspace densely. 
Fig. 3(a) shows an example of distribution of CA3-CA1 place cells after learning. In this 
experiment, the robot, starting from an empty population, recruited about 1000 CA3-CA 1 
place cells. 

In order to interpret the information represented by the ensemble CA3-CA 1 pattern of 
activity, we employ population vector coding [13, 14]. Let s be the unknown robot's lo­
cation, Ti (S) the firing activity of a CA3-CA 1 place cell i, and Si the center of its place 
field . The population vector p is given by the center of mass of the network activity: 
p = Li Si Ti(S)/ L i Ti(S). The approximation p ~ S is good for large neural popula­
tions covering the environment densely and uniformly [15]. In Fig. 3(a) the center of mass 
coding for the robot's location is represented by the black cross. 
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Figure 3: (a) The ensemble activity of approximately 1000 CA3-CAI place cells created by the 
robot during spatial learning. Each dot is the center of a CA3-CA 1 place cell. The lighter a cell, the 
higher its firing rate. The black cross is the center of mass of the ensemble activity. (b) Vector field 
representation of a navigational map learned after 5 trials. The target area (about 2.5 times the area 
occupied by the robot) is the upper-left corner of the arena. 

4 Action learning: Goal-oriented navigation 

The above spatial model enables the robot to localize itself within the environment. To 
support cognitive spatial behavior [1], the hippocampal circuit must also allow the robot to 
learn navigational maps autonomously. Our CA3-CAI population provides an incremen­
tally learned coarse coding representation suitable for applying reinforcement learning for 
continuous high-dimensional state spaces. Learning an action-value function over a con­
tinuous location space endows the system with spatial generalization capabilities. 

We apply a Q(),) learning scheme [16] to build navigational maps [17, 18]. The overlapping 
localized CA3-CA 1 place fields provide a natural set of basis functions that can be used to 
learn a parameterized form of the Q(),) function [19]. Note that we do not have to choose 
parameters like width and location of the basis functions. Rather, the basis functions are 
created automatically by unsupervised learning. Our representation also solves the problem 
of ambiguous input or partially hidden states [12], therefore the current state is fully known 
to the system and reinforcement learning can be applied in a straightforward manner. 

Let ri denote the activation of a CA3-CAI place cell i. Each state s is encoded by the 
ensemble place cell activity vector f(8) = (rl (8) , rds), ... ,rn (8)), where n is the number 
of created place cells. The state-action value function Q w (s, a) is of the form 

n 

Qw(s,a) = (ura)T f(S) = Lwi'ri(S) (5) 
i=l 

where S, a is the state-action pair, and ura = (w'l , ... , w~) is an adjustable parameter 
vector. The learning task consists of updating the weight vector ura to approximate the 
optimal function Q~(s, a). The state-value prediction error is defined by 

St = R t+l + 'Y max Qt (St+l , a) - Qt(St, at) (6) 
a 

where Rt+l is the immediate reward, and 0 ::::; 'Y ::::; 1 is a constant discounting factor. At 
each time step the weight vector ura changes according to 

(7) 
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Figure 4: Two samples of learned navigational maps. The obstacle (dark grey object) is "transpar­
ent" with respect to vision, while it is detectable by the robot's infrared sensors. (a) The map learned 
by the robot after 20 training paths. (b) The map learned by the robot after 80 training trials. 

where 0 ::; ex ::; 1 is a constant learning rate parameter, and et is the eligibility trace vector. 
During learning, the exploitation-exploration trade-off is determined by an f-greedy policy, 
with 0 ::; f ::; 1. As a consequence, at each step t the agent might either behave greedily 
(exploitation) with probability 1 - f , by selecting the best action a; with respect to the 
Q-value functions, a; = argm axaQt (St , a) , or resort to uniform random action selection 
(exploration) with probability equal to f. 

The update of the eligibility trace depends on whether the robot selects an exploratory or 
an exploiting action. Specifically, the vector et changes according to (we start with eo = 0) 

- _ -( - ) + { 'Y >..et- l if exploiting (8) 
et - r St 0 if exploring 

where 0 ::; >.. ::; 1 is a trace-decay parameter [19], and f( Sf) is the CA3-CA 1 vector activity. 

Learning consists of a sequence of training paths starting at random positions and deter­
mined by the f-greedy policy. When the robot reaches the target, a new training path begins 
at a new random location. Fig. 3(b) shows an example of navigational map learned after 5 
training trials . Fig. 4 shows some results obtained by adding an obstacle within the arena 
after the place field representation has been learned. Map of Fig. 4(a) has been learned 
after 20 training paths. It contains proper goal-oriented information, whereas it does not 
provide obstacle avoidance accuratelyl . Fig. 4(b) displays a navigational map learned by 
the robot after 80 training paths. Due to longer training, the map provides both appro­
priate goal-oriented and obstacle avoidance behavior. The vector field representations of 
Figs. 3(b) and 4 have been obtained by rastering uniformJy over the environment. Many of 
sampled locations were not visited by the robot during training, which confirms the gen­
eralization capabilities of the method. That is, the robot was able to associate appropriate 
goal-oriented actions to never experienced spatial positions. 

Reinforcement learning takes long training time when applied directly on high-dimensional 
input spaces [19]. We have shown that by means of an appropriate state space representa­
tion, based on localized overlapping place fields, the robot can learn goal-oriented behavior 
after only 5 training trials (without obstacles). This is similar to the escape platform learn­
ing time of rats in Morris water-maze [20]. 

INote that this does not really impair the robot's goal-oriented behavior, since obstacle avoidance 
is supported by a low-level reactive module driven by infrared sensors. 
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