
Data clustering by Markovian relaxation 
and the Information Bottleneck Method 

N aft ali Tishby and N oam Slonim 
School of Computer Science and Engineering and Center for Neural Computation * 

The Hebrew University, Jerusalem, 91904 Israel 
email: {tishby.noamm}ees.huji.ae.il 

Abstract 

We introduce a new, non-parametric and principled, distance based 
clustering method. This method combines a pairwise based ap­
proach with a vector-quantization method which provide a mean­
ingful interpretation to the resulting clusters. The idea is based 
on turning the distance matrix into a Markov process and then 
examine the decay of mutual-information during the relaxation of 
this process. The clusters emerge as quasi-stable structures dur­
ing this relaxation, and then are extracted using the information 
bottleneck method. These clusters capture the information about 
the initial point of the relaxation in the most effective way. The 
method can cluster data with no geometric or other bias and makes 
no assumption about the underlying distribution. 

1 Introduction 

Data clustering is one of the most fundamental pattern recognition problems, with 
numerous algorithms and applications. Yet, the problem itself is ill-defined: the 
goal is to find a "reasonable" partition of data points into classes or clusters. What 
is meant by "reasonable" depends on the application, the representation of the data, 
and the assumptions about the origins of the data points, among other things. 

One important class of clustering methods is for cases where the data is given as a 
matrix of pairwise distances or (dis) similarity measures. Often these distances come 
from empirical measurement or some complex process, and there is no direct access , 
or even precise definition, of the distance function. In many cases this distance does 
not form a metric, or it may even be non-symmetric. Such data does not necessarily 
come as a sample of some meaningful distribution and even the issue of generaliza­
tion and sample to sample fluctuations is not well defined. Algorithms that use only 
the pairwise distances, without explicit use of the distance measure itself, employ 
statistical mechanics analogies [3] or collective graph theoretical properties [6] , etc. 
The points are then grouped based on some global criteria, such as connected com­
ponents , small cuts, or minimum alignment energy. Such algorithms are sometimes 
computationally inefficient and in most cases it is difficult to interpret the resulting 
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clusters. I.e., it is hard to determine a common property to all the points in one 
cluster - other than that the clusters "look reasonable" . 

A second class of clustering methods is represented by the generalized vector quan­
tization (VQ) algorithm. Here one fits a model (e.g. Gaussian distributions) to the 
points in each cluster, such that an average (known) distortion between the data 
points and their corresponding representative is minimized. This type of algorithm­
s may rely on theoretical frameworks, such as rate distortion theory, and provide 
much better interpretation for the resulting clusters. VQ type algorithms can also 
be more computationally efficient since they require the calculation of distances, 
or distortion, between the data and the centroid models only, not between every 
pair of data points. On the other hand, they require the knowledge of the distor­
tion function and thus make specific assumptions about the underlying structure or 
model of the data. 

In this paper we present a new, information theoretic combination of pairwise clus­
tering with meaningful and intuitive interpretation for the resulting clusters. In 
addition, our algorithm provides a clear and objective figure of merit for the clus­
ters - without making any assumption on the origin or structure of the data points. 

2 Pairwise distances and Markovian relaxation 

The first step of our algorithm is to turn the pairwise distance matrix into a Markov 
process, through the following simple intuition. Assign a state of a Markov chain 
to each of the data points and transition probabilities between the states/points 
as a function of their pairwise distances. Thus the data can be considered as a 
directed graph with the points as nodes and the pairwise distances, which need not 
be symmetric or form a metric, on the arcs of the graph. Distances are normally 
considered additive, i.e., the length of a trajectory on the graph is the sum of the 
arc-lengths. Probabilities, on the other hand, are multiplicative for independent 
events, so if we want the probability of a (random) trajectory on the graph to be 
naturally related to its length , the transition probabilities between points should be 
exponential in their distance. Denoting by d(Xi' Xj) the pairwise distance between 
the points Xi and Xj, 1 then the transition probability that our Markov chain move 
from the point Xj at time t to the point X i at time t + 1, Pi,j == P(Xi(t + l)lxj(t)), 
is chosen as, 

P(Xi(t + l)lxj(t)) ex: exp( ->"d(Xi,Xj)) , (1) 
where >..-1 is a length scaling factor that equals the mean pairwise distance of the k 
nearest neighbors to the point Xi. The details of this rescaling are not so important 
for the final results, and a similar exponentiation of the distances, without our 
probabilistic interpretation, was performed in other clustering works (see e.g. [3 , 6]). 
A proper normalization of each row is required to turn this matrix into a stochastic 
transition matrix. 

Given this transition matrix, one can imagine a random walk starting at every 
point on the graph. Specifically, the probability distribution of the positions of 
a random walk, starting at Xj after t time steps, is given by the j-th row of the 
t -th iteration of the I-step transition matrix. Denoting by pt the t-step transition 
matrix, pt = (P)t , is indeed the t-th power of the I-step transition probability 
matrix. The probability of a random walk starting at Xj at time 0, to be at Xi at 
time t is thus, 

p(xi(t) IXj(O)) = Ptj . (2) 
---------------------------

1 Henceforth we take the number of data points to be n and the point indices run 
implicitly from 1 to n unless stated otherwise. 



If we assume that all the given pairwise distances are finite we obtain in this way 
an ergodic Markov process with a single stationary distribution, denoted by 7r. 
This distribution is a right-eigenvector of the t-step transition matrix (for every t), 
since, 7ri = 2:j Pi,j7rj . It is also the limit distribution of p(Xi (t) IXj (0)) for all j, 
i.e., limHOOp(xi(t)lxj(O)) = 7ri. During the dynamics of the Markov process any 
initial state distribution is going to relax to this final stationary distribution and 
the information about the initial point of a random walk is completely lost. 
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Figure 1: On the left shown an example of data, consisting of 150 points in 2D. On the 
middle, we plot the rate of information loss, - d~~t) , during the relaxation. Notice that the 
algorithm has no prior information about circles or ellipses. The rate of the information 
loss is slow when the "random walks" stabilize on some sub structures of the data - our 
proposed clusters. On the right we plot the rate of information loss for the colon cancer 
data, and the accuracy of the obtained clusters for different relaxation times, with the 
original classes. 

2.1 Relaxation of the mutual information 

The natural way to quantify the information loss during this relaxation process is 
by the mutual information between the initial point variable , X(O) = {Xj(O)} and 
the point of the random walk at time t, X(t) = {Xi(t)}. The mutual information 
between the random variables X and Y is the symmetric functional of their joint 
distribution, 

I(X ;Y) = L P(x,Y)log( ~~~'r\) = L p(x)p(YIX)log(P(Y(lx))) 
xEX,yEY P P Y xEX,yEY P Y 

(3) 
For the Markov relaxation this mutual information is given by, 

I(t) == I(X(O) ;X(t)) = LPj LP/,jlog Pi> = LPjDKdPt)lp~] , (4) 
j i Pi j 

where Pj is the prior probability of the states, and P; = 2:j P;,jPj is the uncondi­
tioned probability of Xi at time t. The DKL is the Kulback-Liebler divergence [4], 

defined as: DKL [Pllq] == 2:y p(y) log ~ which is the information theoretic measure 

of similarity of distributions. Since all the rows P; j relax to 7r this divergence goes 
to zero as t --+ 00. While it is clear that the information about the initial point, 
I(t), decays monotonically (exponentially asymptotically) to zero, the rate of this 
decay at finite t conveys much information on the structure of the data points. 

Consider, as a simple example, the planer data points shown in figure 1, with 
d(Xi,Xj) = (Xi - Xj)2 + (Yi - Yj)2. As can be seen, the rate of information loss 



about the initial point of the random walk, - d~~t ) , while always positive - slows 
down at specific times during the relaxation. These relaxation locations indicate 
the formation of quasi-stable structures on the graph. At these relaxation times 
the transition probability matrix is approximately a projection matrix (satisfying 
p2t ,:::: pt) where the almost invariant subgraphs correspond to the clusters. These 
approximate stationary transitions correspond to slow information loss, which can 
be identified by derivatives of the information loss at time t. Another way to see this 
phenomena is by observing the rows of pt, which are the conditional distributions 
p(x;(t)lxj(O)). The rows that are almost indistinguishable, following the partial 
relaxation , correspond to points Xj with similar conditional distribution on the rest 
of the graph at time t. Such points should belong to the same structure, or cluster 
on the graph. This can be seen directly by observing the matrix pt during the 
relaxation , as shown in figure 2. The quasi-stable structures on the graph , during 
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Figure 2: The relaxation process as seen directly on the matrix pt, for different times, for 
the example data of figure 1. The darker colors correspond to higher probability density 
in every row. Since the points are ordered by the 3 ellipses, 50 in each ellipse, it is easy 
to see the clear emergence of 3 blocks of conditional distributions - the rows of the matrix 
- during the relaxation process. For very large t there is complete relaxation and all the 
rows equal the stationary distribution of the process. The best correlation between the 
resulting clusters and the original ellipses (i.e., highest "accuracy" value) is obtained for 
intermediate times, where the underlying structure emerges. 

the relaxation process, are precisely the desirable m eaningful clusters. 

The remaining question pertains to the correct way to group the initial points 
into clusters that capture the information about the position on the graph after 
t-steps. In other words, can we replace the initial point with an initial cluster, that 
enables prediction of the location on the graph at time t, with similar accuracy? The 
answer to this question is naturally provided via the recently introduced information 
bottleneck method [12, 11]. 



3 Clusters that preserve information 

The problem of self-organization of the members of a set X based on the similarity 
of the conditional distributions of the members of another set, Y , {p(Ylx)} , was first 
introduced in (9) and was termed "distributional clustering" . 

This question was recently shown in (12) to be a specific case of a much more 
fundamental problem: What are the features of the variable X that are relevant 
to the prediction of another, relevance, variable Y? This general problem was 
shown to have a natural information theoretic formulation: Find a compressed 
representation of the variable X, denoted X, such that the mutual information 
between X and Y, I(X; Y), is as high as possible, under a constraint on the mutual 
information between X and X, I(X; X) . Surprisingly, this variational principle 
yields an exact formal solution for the conditional distributions p(ylx), p(xlx), and 
p(x). This constrained information optimization problem was called in (12) The 
Information Bottleneck Method. 

The original approach to the solution of the resulting equations, used already in 
[9], was based on an analogy with the "deterministic annealing" (DA) approach to 
clustering (see [10, 8]). This is a top-down hierarchical algorithm that starts from a 
single cluster and undergoes a cascade of cluster splits which are determined stochas­
tically (as phase transitions) into a "soft" (fuzzy) tree of clusters. We proposed an 
alternative approach, based on a greedy bottom-up merging, the "Agglomerative 
Information Bottleneck" (AlB , see [11]) , which is simpler and works better than the 
DA approach in many situations. This algorithm was applied also in the examples 
given here. 

3.1 The information bottleneck method 

Given any two non-independent random variables, X and Y, the objective of the 
information bottleneck method is to extract a compact representation of the vari­
able X, denoted here by X, with minimal loss of mutual information to another, 
relevance, variable Y. More specifically, we want to find a (possibly stochastic) map, 
p(x lx ), that maximizes the mutual information to the relevance variable I(X;Y) , 
under a constraint on the (lossy) coding length of X via X, I(X; X). In other 
words , we want to find an efficient representation of the variable X, X, such that 
the predictions of Y from X through X will be as close as possible to the direc­
t prediction of Y from X. As shown in [12], by introducing a positive Lagrange 
multiplier (3 to enforce the mutual information constraint, the problem amounts to 
maximization of the Lagrangian: 

£(P(x lx )) = I(X; Y) - (3-1 I(X; X) , (5) 

with respect to p(x lx), subject to the Markov condition X --+ X --+ Y and normal­
ization. This minimization yields directly the following (self-consistent) equations 
for the map p(xlx) , and for p(ylx) and p(x): 

{ 
p(xlx) = ~~~) exp (-(3DKL (P(ylx )llp(ylx))) 
p(ylx) = 2:x p(Ylx)p(xlx)~ 
p(x) = 2:xp(x lx )p(x) 

(6) 

where Z((3, x) is a normalization function. The familiar Kulback-Liebler divergence, 
DKL(P(ylx)llp(ylx) )' emerges here from the variational principle. These equations 
can be solved by iterations that are proved to converge for any finite value of (3 



(see [12]). The Lagrange multiplier /3 has the natural interpretation of inverse 
temperature, which suggests deterministic annealing to explore the hierarchy of 
solutions in X. The variational principle, Eq.(5), determines also the shape of the 
annealing process, since by changing /3 the mutual informations Ix == I(X; X) and 
Iy == I(X; Y) vary such that 

My = /3-1 . 
<SIx 

(7) 

Thus the optimal curve, which is analogous to the rate distortion function in infor­
mation theory [4], follows a strictly concave curve in the (Ix, Iy) plane. 

The information bottleneck algorithms provide an information theoretic mechanism 
for identifying the quasi-stable structures on the graph that form our meaningful 
clusters. In our clustering application the variables are taken as X = X(O) and 
Y = X(t) during the relaxation process. 

4 Discussion 

When varying the temperature T = /3-1, the information bottleneck algorithms ex­
plore the structure of the data in various resolutions. For very low T, the resolution 
is high and each point appears in a cluster of its own. For very high T all points are 
grouped into one cluster. This process resembles the appearance of the structure 
during the relaxation. However, there is an important difference between these two 
mechanisms. 

In the bottleneck algorithms clusters are formed by isotropically blurring the condi­
tional distributions that correspond to each data point. Points are clustered together 
when these distributions become sufficiently similar. This process is not sensitive 
to the global topology of the graph representing the data. This can be understood 
by looking at the example of figure 1. If we consider two diametrically opposing 
points on one of the ellipses, they will be clustered together only when their blurred 
distributions overlap. In this example, unfortunately, this happens when the three 
ellipses are completely indistinguishable. A direct application of the bottleneck to 
the original transition matrix is therefore bound to fail in this case. 

In the relaxation process, on the other hand, the distributions are merged through 
the Markovian dynamics on the graph. In our specific example, two opposing points 
become similar when they reach the other states with similar probabilities following 
partial relaxation. This process better preserves the fine structure of the underlying 
graph, and thus enables finer partitioning of the data. 

It is thus necessary to combine the two processes. In the first stage, one should 
relax the Markov process to a quasi-stable point in terms of the rate of information 
loss. At this point some natural underlying structure emerges, and reflected in the 
partially relaxed transition matrix, pt. In the second stage we use the information 
bottleneck algorithm to identify the information preserving clusters. 

5 More examples 

We applied our method to several 'standard ' clustering problems and obtained very 
good results. The first one was the famous "iris data" [7], on which we easily 
obtained just 5 misclassified points. 

A more interesting application was obtained on well known gene expression data, 
the Colon cancer data set provided by Alon et. al [l).This data set consists of 



62 tissue samples out of which 22 came from tumors and the rest from "normal" 
biopsies of colon parts of the same patients. Gene expression levels were given for 
2000 genes (oligonucleotides), resulting with a 62 over 2000 matrix. 

As done in other studies of this data, we calculated the Pearson correlation, Kp (u, v) 
(see, e.g., [5]) , between the u and v expression rows and then transforemed this mea-

sure to distances through the simple transformation defined by d(u, v) = ~~~:i~:~l. 
In figure 1 (right panel) we present the rate of information loss for this data and the 
accuract of the obtained clusters with the original tissue classes. The emrgence of 
two clusters at the times of "slow" information loss is clearly seen for t = 24 to 212 

iterations. The information bottleneck algorithm, when applied at these relaxation 
times, discovers the original tissue classes, up to 6 or 7 "misclassified" tissues (see 
figure). For comparison, seven more sophisticated supervised, techniques applied in 
[2] to this data. Six of them had 12 misclassified points or more, and their best 
results had 7 missclasifed tissues. 
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