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Abstract 

An important class of problems can be cast as inference in noisy­
OR Bayesian networks, where the binary state of each variable is 
a logical OR of noisy versions of the states of the variable's par­
ents. For example, in medical diagnosis, the presence of a symptom 
can be expressed as a noisy-OR of the diseases that may cause the 
symptom - on some occasions, a disease may fail to activate the 
symptom. Inference in richly-connected noisy-OR networks is in­
tractable, but approximate methods (e .g., variational techniques) 
are showing increasing promise as practical solutions. One prob­
lem with most approximations is that they tend to concentrate 
on a relatively small number of modes in the true posterior, ig­
noring other plausible configurations of the hidden variables. We 
introduce a new sequential variational method for bipartite noisy­
OR networks, that favors including all modes of the true posterior 
and models the posterior distribution as a tree. We compare this 
method with other approximations using an ensemble of networks 
with network statistics that are comparable to the QMR-DT med­
ical diagnostic network. 

1 Inclusive variational approximations 

Approximate algorithms for probabilistic inference are gaining in popularity and are 
now even being incorporated into VLSI hardware (T. Richardson, personal commu­
nication). Approximate methods include variational techniques (Ghahramani and 
Jordan 1997; Saul et al. 1996; Frey and Hinton 1999; Jordan et al. 1999), local prob­
ability propagation (Gallager 1963; Pearl 1988; Frey 1998; MacKay 1999a; Freeman 
and Weiss 2001) and Markov chain Monte Carlo (Neal 1993; MacKay 1999b). Many 
algorithms have been proposed in each of these classes. 

One problem that most of the above algorithms suffer from is a tendency to con­
centrate on a relatively small number of modes of the target distribution (the dis­
tribution being approximated). In the case of medical diagnosis, different modes 
correspond to different explanations of the symptoms. Markov chain Monte Carlo 
methods are usually guaranteed to eventually sample from all the modes, but this 
may take an extremely long time, even when tempered transitions (Neal 1996) are 
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Figure 1: We approximate P(x) by adjusting the mean and variance of a Gaussian, Q(x}. (a) 
The result of minimizing D(QIIP) = 2:" Q(x)log(Q(x)/ P(x», as is done for most variational 
methods. (b) The result of minimizing D(PIIQ) = 2:" P(x)log(P(x)/Q(x». 

used. Preliminary results on local probability propagation in richly connected net­
works show that it is sometimes able to oscillate between plausible modes (Murphy 
et al. 1999; Frey 2000), but other results also show that it sometimes diverges or 
oscillates between implausible configurations (McEliece et al. 1996). 

Most variational techniques minimize a cost function that favors finding the single, 
most massive mode, excluding less probable modes of the target distribution (e.g., 
Saul et al. 1996; Ghahramani and Jordan 1997; Jaakkola and Jordan 1999; Frey 
and Hinton 1999; Attias 1999). More sophisticated variational techniques capture 
multiple modes using substructures (Saul and Jordan 1996) or by leaving part of 
the original network intact and approximating the remainder (Jaakkola and Jordan 
1999). However, although these methods increase the number of modes that are 
captured, they still exclude modes. 

Variational techniques approximate a target distribution P(x) using a simpler, 
parameterized distribution Q(x) (or a parameterized bound). For example, 
P(diseasel, disease2,'" , diseaseNlsymptoms) may be approximated by a factor­
ized distribution, Ql (diseasedQ2 (disease2) .. ·QN(diseaseN). For the current set 
of observed symptoms, the parameters of the Q-distributions are adjusted to make 
Q as close as possible to P. 

A common approach to variational inference is to minimize a relative entropy, 

D(QIIP) = l: Q(x) log ~~:~. 
x 

(1) 

Notice that D(QIIP):j:. D(PIIQ). Often D(QIIP) can be minimized with respect to 
the parameters of Q using iterative optimization or even exact optimization. 

To see how minimizing D(QIIP) may exclude modes of the target distribution, 
suppose Q is a Gaussian and P is bimodal with a region of vanishing density between 
the two modes, as shown in Fig. 1. If we minimize D(QIIP) with respect to the 
mean and variance of Q, it will cover only one of the two modes, as illustrated in 
Fig.1a. (We assume the symmetry is broken.) This is because D(QIIP) will tend 
to infinity if Q is nonzero in the region where P has vanishing density. 

In contrast, if we minimize D(PIIQ) = Ex P(x)log(P(x)/Q(x)) with respect to the 
mean and variance of Q, it will cover all modes, since D(PIIQ) will tend to infinity 
if Q vanishes in any region where P is nonzero. See Fig. lb. 

For many problems, including medical diagnosis, it is easy to argue that it is more 
important that our approximation include all modes than exclude non plausible 
configurations at the cost of excluding other modes. The former leads to a low 
number of false negatives, whereas the latter may lead to a large number of false 
negatives (concluding a disease is not present when it is) . 



Figure 2: Bipartite Bayesian network. 8kS are observed, dns are hidden. 

2 Bipartite noisy-OR networks 

Fig. 2 shows a bipartite noisy-OR Bayesian network with N binary hidden variables 
d = (d1, . . . , dN) and K binary observed variables s = (Sl, . . . , S K) . Later, we 
present results on medical diagnosis, where dn = 1 indicates a disease is active, 
dn = 0 indicates a disease is inactive, Sk = 1 indicates a symptom is active and 
Sk = 0 indicates a symptom is inactive. 

The joint distribution is 

K N 

P(d, s) = [II P(skl d )] [II P(dn )]. (2) 
k=l n=l 

In the case of medical diagnosis, this form assumes the diseases are independent. 1 

Although some diseases probably do depend on other diseases, this form is consid­
ered to be a worthwhile representation of the problem (Shwe et al., 1991). 

The likelihood for Sk takes the noisy-OR form (Pearl 1988). The probability that 
symptom Sk fails to be activated (Sk = 0) is the product of the probabilities that 
each active disease fails to activate Sk: 

N 

P(Sk = Old) = PkO II p~~. (3) 
n=l 

Pkn is the probability that an active dn fails to activate Sk. PkO accounts for a "leak 
probability". 1-PkO is the probability that symptom Sk is active when none of the 
diseases are active. 

Exact inference computes the distribution over d given a subset of observed values 
in s. However, if Sk is not observed, the corresponding likelihood (node plus edges) 
may be deleted to give a new network that describes the marginal distribution 
over d and the remaining variables in s. So, we assume that we are considering a 
subnetwork where all the variables in s are observed. 

We reorder the variables in s so that the first J variables are active (Sk = 1, 
1 ~ k ~ J) and the remaining variables are inactive (Sk = 0, J + 1 ~ k ~ K). The 
posterior distribution can then be written 

J N K N N 

P(dls) ocP(d,s) = [II(1-PkoIIp~~)][ II (pkoIIp~~)][IIP(dn)J. (4) 
k=l n=l k=J+1 n=l n=l 

Taken together, the two terms in brackets on the right take a simple, product form 
over the variables in d. So, the first step in inference is to "absorb" the inactive 

1 However, the diseases are dependent given that some symptoms are present . 



variables in s by modifying the priors P(dn) as follows: 

K d 

pI (dn) = anP(dn) ( II Pkn) n, (5) 
k=J+l 

where an is a constant that normalizes P/(dn). 

Assuming the inactive symptoms have been absorbed, we have 

J N N 

P(dls) ex [II (1 - PkO II p~~)] [II P/(dn)]. (6) 
k=l n=l n=l 

The term in brackets on the left does not have a product form. The entire expression 
can be multiplied out to give a sum of 2J product forms, and exact "QuickS core" 
inference can be performed by combining the results of exact inference in each of the 
2J product forms (Heckerman 1989). However, this exponential time complexity 
makes large problems, such as QMR-DT, intractable. 

3 Sequential inference using inclusive variational trees 
As described above, many variational methods minimize D(QIIP), and find ap­
proximations that exclude some modes of the posterior distribution. We present 
a method that minimizes D(PIIQ) sequentially - by absorbing one observation at 
a time - so as to not exclude modes of the posterior. Also, we approximate the 
posterior distribution with a tree. (Directed and undirected trees are equivalent -
we use a directed representation, where each variable has at most one parent.) 

The algorithm absorbs one active symptom at a time, producing a new tree by 
searching for the tree that is closest - in the D(PIIQ) sense - to the product of 
the previous tree and the likelihood for the next symptom. This search can be 
performed efficiently in O(N2 ) time using probability propagation in two versions 
of the previous tree to compute weights for edges of a new tree, and then applying 
a minimum-weight spanning-tree algorithm. 

Let Tk(d) be the tree approximation obtained after absorbing the kth symptom, 
Sk = 1. Initially, we take To(d) to be a tree that decouples the variables and has 
marginals equal to the marginals obtained by absorbing the inactive symptoms, as 
described above. 

Interpreting the tree Tk-l (d) from the previous step as the current "prior" over the 
diseases, we use the likelihood P(Sk = lid) for the next symptom to obtain a new 
estimate of the posterior: 

N 

A(dls1 , ... ,Sk) ex Tk-l (d)P(Sk = lid) = Tk-l (d) (1 - PkO II p~~) 
n=l 

= Tk-l(d) - TLl(d), (7) 

where TLI (d) = Tk-l (d) (PkO TI;;=l p~~) is a modified tree. 

Let the new tree be Tk(d) = TIn Tk(dnld1rk (n)), where 7rk (n) is the index of the par­
ent of dn in the new tree. The parent function 7rk (n) and the conditional probability 
tables of Tk (d) are found by minimizing 

(8) 



Ignoring constants, we have 

D(FkIITk) = - 2:Fk(dls1, ... ,Sk) log Tk (d) 
d 

= - 2: (Tk- 1 (d) - TLl(d)) log (II Tk(dnld1fk(n))) 
d n 

= - 2: (2:(Tk-l(d) - TLl(d)) 10gTk(dnld1fk(n))) 
n d 

= - 2:(2: 2: (Tk-l(dn,d1fk(n)) - T~_l(dn,d1fk(n))) 10gTk(dnld1fk(n))). 
n dn d"k(n) 

For a given structure (parent function 7l"k(n)), the optimal conditional probability 
tables are 

(9) 

where f3n is a constant that ensures Ldn Tk(dnld1fk (n)) = 1. This table is easily com­
puted using probability propagation in the two trees to compute the two marginals 
needed in the difference. 

The optimal conditional probability table for a variable is independent of the parent­
child relationships in the remainder of the network. So, for the current symptom, 
we compute the optimal conditional probability tables for all N(N - 1)/2 possible 
parent-child relationships in O(N2) time using probability propagation. Then, we 
use a minimum-weight directed spanning tree algorithm (Bock 1971) to search for 
the best tree. 

Once all of the symptoms have been absorbed, we use the final tree distribution, 
TJ(d) to make inferences about d given s. The order in which the symptoms are 
absorbed will generally affect the quality of the resulting tree (Jaakkola and Jordan 
1999), but we used a random ordering in the experiments reported below. 

4 Results on QMR-DT type networks 

Using the structural and parameter statistics of the QMR-DT network given in 
Shwe et al. (1991) we simulated 30 QMR-DT type networks with roughly 600 
diseases each. There were 10 networks in each of 3 groups with 5, 10 and 15 
instantiated active symptoms. We chose the number of active symptoms to be small 
enough that we can compare our approximate method with the exact QuickScore 
method (Heckerman 1989). We also tried two other approximate inference methods: 
local probability propagation (Murphy et al. 1999) and a variational upper bound 
(Jaakkola and Jordan 1999). 

For medical diagnosis, an important question is how many most probable diseases 
n' under the approximate posterior must be examined before the most probable n 
diseases under the exact posterior are found. Clearly, n ~ n' ~ N. An exact infer­
ence algorithm will give n' = n, whereas an approximate algorithm that mistakenly 
ranks the most probable disease last will give n' = N. For each group of networks 
and each inference method, we averaged the 10 values of n' for each value of n. 

The left column of plots in Fig. 3 shows the average of n' versus n for 5, 10 and 15 
active symptoms. The sequential tree-fitting method is closest to optimal (n' = n) 
in all cases. The right column of plots shows the "extra work" caused by the excess 
number of diseases n' - n that must be examined for the approximate methods. 
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Figure 3: Comparisons of the number of most probable diseases n' under the approximate 
posterior that must be examined before the most probable n diseases under the exact posterior 
are found. Approximate methods include the sequential tree-fitting method presented in this 
paper (tree), local probability propagation (pp) and a variational upper bound (ub). 

5 Summary 
Noisy-OR networks can be used to model a variety of problems, including medical di­
agnosis. Exact inference in large, richly connected noisy-OR networks is intractable, 
and most approximate inference algorithms tend to concentrate on a small number 
of most probable configurations of the hidden variables under the posterior. We 
presented an "inclusive" variational method for bipartite noisy-OR networks that 
favors including all probable configurations, at the cost of including some improba­
ble configurations. The method fits a tree to the posterior distribution sequentially, 
i.e., one observation at a time. Results on an ensemble of QMR-DT type networks 
show that the method performs better than local probability propagation and a 
variational upper bound for ranking most probable diseases. 
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