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Abstract 

An eigenvalue method is developed for analyzing periodic structure in 
speech. Signals are analyzed by a matrix diagonalization reminiscent of 
methods for principal component analysis (PCA) and independent com­
ponent analysis (ICA). Our method-called periodic component analysis 
(1l"CA)-uses constructive interference to enhance periodic components 
of the frequency spectrum and destructive interference to cancel noise. 
The front end emulates important aspects of auditory processing, such as 
cochlear filtering, nonlinear compression, and insensitivity to phase, with 
the aim of approaching the robustness of human listeners. The method 
avoids the inefficiencies of autocorrelation at the pitch period: it does not 
require long delay lines, and it correlates signals at a clock rate on the 
order of the actual pitch, as opposed to the original sampling rate. We 
derive its cost function and present some experimental results. 

1 Introduction 

Periodic structure in the time waveform conveys important cues for recognizing and under­
standing speech[I]. At the end of an English sentence, for example, rising versus falling 
pitch indicates the asking of a question; in tonal languages, such as Chinese, it carries lin­
guistic information. In fact, early in the speech chain-prior to the recognition of words or 
the assignment of meaning-the auditory system divides the frequency spectrum into peri­
odic and non-periodic components. This division is geared to the recognition of phonetic 
features[2]. Thus, a voiced fricative might be identified by the presence of periodicity in 
the lower part of the spectrum, but not the upper part. In complicated auditory scenes, peri­
odic components of the spectrum are further segregated by their fundamental frequency [3 ]. 
This enables listeners to separate simultaneous speakers and explains the relative ease of 
separating male versus female speakers, as opposed to two recordings of the same voice[4]. 

The pitch and voicing of speech signals have been extensively studied[5]. The simplest 
method to analyze periodicity is to compute the autocorrelation function on sliding win­
dows of the speech waveform. The peaks in the autocorrelation function provide estimates 
of the pitch and the degree of voicing. In clean wideband speech, the pitch of a speaker 
can be tracked by combining a peak-picking procedure on the autocorrelation function 
with some form of smoothing[6], such as dynamic programming. This method, however, 



does not approach the robustness of human listeners in noise, and at best, it provides an 
extremely gross picture of the periodic structure in speech. It cannot serve as a basis 
for attacking harder problems in computational auditory scene analysis, such as speaker 
separation[7], which require decomposing the frequency spectrum into its periodic and 
non-periodic components. 

The correlogram is a more powerful method for analyzing periodic structure in speech. It 
looks for periodicity in narrow frequency bands. Slaney and Lyon[8] proposed a percep­
tual pitch detector that autocorrelates multichannel output from a model of the auditory 
periphery. The auditory model includes a cochlear filterbank and periodicity-enhancing 
nonlinearities. The information in the correlogram is summed over channels to produce an 
estimate of the pitch. This method has two compelling features: (i) by measuring autocor­
relation, it produces pitch estimates that are insensitive to phase changes across channels; 
(ii) by working in narrow frequency bands, it produces estimates that are robust to noise. 
This method, however, also has its drawbacks. Computing multiple autocorrelation func­
tions is expensive. To avoid aliasing in upper frequency bands, signals must be correlated 
at clock rates much higher than the actual pitch. From a theoretical point of view, it is 
unsatisfying that the combination of information across channels is not derived from some 
principle of optimality. Finally, in the absence of conclusive evidence for long delay lines 
(~1O ms) in the peripheral auditory system, it seems worthwhile-for both scientists and 
engineers-to study ways of detecting periodicity that do not depend on autocorrelation. 

In this paper, we develop an eigenvalue method for analyzing periodic structure in speech. 
Our method emulates important aspects of auditory processing but avoids the inefficiencies 
of autocorrelation at the pitch period. At the same time, it is highly robust to narrowband 
noise and insensitive to phase changes across channels. Note that while certain aspects of 
the method are biologically inspired, its details are not intended to be biologically realistic. 

2 Method 

We develop the method in four stages. These stages are designed to convey the main tech­
nical ideas of the paper: (i) an eigenvalue method for combining and enhancing weakly 
periodic signals; (ii) the use of Hilbert transforms to compensate for phase changes across 
channels; (iii) the measurement of periodicity by efficient sinusoidal fits; and (iv) the hier­
archical analysis of information across different frequency bands. 

2.1 Cross-correlation of critical bands 

Consider the multichannel output of a cochlear filterbank. If the input to this filterbank 
consists of noisy voiced speech, the output will consist of weakly periodic signals from 
different critical bands. Can we combine these signals to enhance the periodic signature 
of the speaker's pitch? We begin by studying a mathematical idealization of the problem. 
Given n real-valued signals, {xi(t)}i=l' what linear combination s(t) = Li WiXi(t) max­
imizes the periodic structure at some fundamental frequency fa, or equivalently, at some 
pitch period T = 1/ fa? Ideally, the linear combination should use constructive interfer­
ence to enhance periodic components of the spectrum and destructi ve interference to cancel 
noise. We measure the periodicity of the combined signal by the cost function: 

( ) _ Lt Is(t + T) - s(tW 
c w, T - Lt Is(t)12 with s(t) = L WiXi(t). (1) 

Here, for simplicity, we have assumed that the signals are discretely sampled and that the 
period T is an integer multiple of the sampling interval. The cost function c (w , T) measures 
the normalized prediction error, with the period T acting as a prediction lag. Expanding the 



right hand side in terms of the weights Wi gives: 

Lij Wi wjAij(7) 
e(W,7) = L ' 

ij WiwjBij 
(2) 

where the matrix elements Aij (7) are determined by the cross-correlations, 

Aij (7) = L [Xi(t)Xj(t) + Xi(t + 7)Xj(t + 7) - Xi(t)Xj (t + 7) - Xi (t + 7)Xj (t)] , 
t 

and the matrix elements Bij are the equal-time cross-correlations, Bij = Lt Xi (t)Xj(t). 
Note that the denominator and numerator of eq. (2) are both quadratic forms in the 
weights Wi. By the Rayleigh-Ritz theorem of linear algebra, the weights Wi minimizing 
eq. (2) are given by the eigenvector of the matrix B-1 A( 7) with the smallest eigenvalue. 
For fixed 7, this solution corresponds to the global minimum of the cost function e( w, 7). 
Thus, matrix diagonalization (or simply computing the bottom eigenvector, which is often 
cheaper) provides a definitive answer to the above problem. 

The matrix diagonalization which optimizes eq. (2) is reminiscent of methods for principal 
component analysis (PCA) and independent component analysis (IcA)[9]. Our method­
which by analogy we call periodic component analysis (1I'cA)-uses an eigenvalue princi­
ple to combine periodicity cues from different parts of the frequency spectrum. 

2.2 Insensitivity to phase 

The eigenvalue method in the previous section has one obvious shortcoming: it cannot 
compensate for phase changes across channels. In particular, the real-valued linear combi­
nation 8(t) = Li WiX;(t) cannot align the peaks of signals that are (say) 11'/2 radians out 
of phase, even though such an alignment-prior to combining the signals-would signifi­
cantly reduce the normalized prediction error in eq. (1). 

A simple extension of the method overcomes this shortcoming. Given real-valued sig­
nals, {x;(t)} , we consider the analytic signals, {x;(t)}, whose imaginary components are 
computed by Hilbert transforms[lO]. The Fourier series of these signals are related by: 

X;(t) = L D:k COS(Wkt + ¢k) 
k 

¢:::::> x;(t) = L D:k e;(Wkt+¢k). 
k 

(3) 

We now reconsider the problem of the previous section, looking for the linear combination 
of analytic signals, 8(t) = L; w;x;(t), that minimizes the cost function in eq. (1). In this 
setting, moreover, we allow the weights W; to be complex so that they can compensate for 
phase changes across channels. Eq. (2) generalizes in a straightforward way to: 

L;j wi wjA;j(7) 
e(w ,7)= L * ' 

;j w; wjB;j 
(4) 

where A ( 7) and B are Hermitian matrices with matrix elements 

A;j(7) = L [x;(t)Xj(t) + x;(t + 7)Xj(t + 7) - x;(t)Xj(t + 7) - x;(t + 7)Xj(t)] 
t 

and B;j = Lt x;(t)Xj(t). Again, the optimal weights W; are given by the eigenvector 
corresponding to the smallest eigenvalue of the matrix B- 1 A ( 7). (Note that all the eigen­
values of this matrix are real because the matrix is Hermitian.) 

Our analysis so far suggests a simple-minded approach to investigating periodic structure 
in speech. In particular, consider the following algorithm for pitch tracking. The first 
step of the algorithm is to pass speech through a cochlear filterbank and compute analytic 



signals, Xi (t), via Hilbert transforms. The next step is to diagonalize the matrices B-1 A( T) 
on sliding windows of Xi(t) over a range of pitch periods, T E [Tmin, Tmaxl. The final step 
is to estimate the pitch periods by the values of T that minimize the cost function, eq. (1), 
for each sliding window. One might expect such an algorithm to be relatively robust to 
noise (because it can zero the weights of corrupted channels), as well as insensitive to 
phase changes across channels (because it can absorb them with complex weights). 

Despite these attractive features, the above algorithm has serious deficiencies. Its worst 
shortcoming is the amount of computation needed to estimate the pitch period, T. Note that 
the analysis step requires computing n 2 cross-correlation functions, Lt xi(t)x j (t+T), and 
diagonalizing the n x n matrix, B- 1 A(T). This step is unwieldy for three reasons: (i) the 
burden of recomputing cross-correlations for different values of T, (ii) the high sampling 
rates required to avoid aliasing in upper frequency bands, and (iii) the poor scaling with the 
number of channels, n. We address these concerns in the following sections. 

2.3 Extracting the fundamental 

Further signal processing is required to create multichannel output whose periodic struc­
ture can be analyzed more efficiently. Our front end, shown in Fig. 1, is designed to an­
alyze voiced speech with fundamental frequencies in the range fa E [fmin, fmax] , where 
fmax < 2fmin. The one-octave restriction on fa can be lifted by considering parallel, over­
lapping implementations of our front end for different frequency octaves. 

The stages in our front end are inspired by important aspects of auditory processing[lO]. 
Cochlear filtering is modeled by a Bark scale filterbank with contiguous passbands. Next, 
we compute narrowband envelopes by passing the outputs of these filters through two non­
linearities: half-wave rectification and cube-root compression. These operations are com­
monly used to model the compressive unidirectional response of inner hair cells to move­
ment along the basilar membrane. Evidence for comparison of envelopes in the peripheral 
auditory system comes from experiments on comodulation masking release[ll]. Thus, the 
next stage of our front end creates a multichannel array of signals by pairwise multiply­
ing envelopes from nearby parts of the frequency spectrum. Allowed pairs consist of any 
two envelopes, including an envelope with itself, that might in principle contain energy 
at two consecutive harmonics of the fundamental. Multiplying these harmonics-just like 
multiplying two sine waves-produces intermodulation distortion with energy at the sum 
and difference frequencies. The energy at the difference frequency creates a signature of 
"residue" pitch at fa. The energy at the sum frequency is removed by bandpass filtering to 
frequencies [fmin'!max] and aggressively downsampling to a sampling rate fs = 4fmin. 
Finally, we use Hilbert transforms to compute the analytic signal in each channel, which 
we call Xi(t). 

In sum, the stages of the front end create an array of bandlimited analytic signals, Xi (t), 
that-while derived from different parts of the frequency spectrum-have energy concen­
trated at the fundamental frequency, fa. Note that the bandlimiting of these channels to 
frequencies [fmin, fmax] where fmax <2fmin removes the possibility that a channel con­
tains periodic energy at any harmonic other than the fundamental. In voiced .speech, this 
has the effect that periodic channels contain noisy sine waves with frequency fa. 
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Figure 1: Signal processing in the front end. 
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How can we combine these "baseband" signals to enhance the periodic signature of a 
speaker's pitch? The nature of these signals leads to an important simplification of the 
problem. As opposed to measuring the autocorrelation at lag T, as in eq. (1), here we can 
measure the periodicity of the combined signal by a simple sinusoidalfit. Let ~ = 27r fo/ f. 
denote the phase accumulated per sample by a sine wave with frequency fo at sampling 
rate f., and let S (t) = I:i Wi Xi (t) denote the combined signal. We measure the periodic­
ity of the combined signal by 

( A) _ I:t Is(t + 1) - s(t)ei~ 12 _ I:ij wiWjAij(~) 
C w,u - - , I:t Is(t)12 I:ij Wi WjBij 

(5) 

where the matrix B is again formed by computing equal-time cross-correlations, and the 
matrix A(~) has elements 

Aij(~) = L [x;(t)Xj(t)+X;(t+l)Xj(t+l)-e-i~x;(t)Xj(t+l)-ei~x;(t+l)xj(t)] . 
t 

For fixed ~, the optimal weights Wi are given by the eigenvector corresponding to the 
smallest eigenvalue of the matrix B- 1 A( ~). 

Note that optimizing the cost function in eq. (5) over the phase, ~, is equivalent to opti­
mizing over the fundamental frequency, fo, or the pitch period, T. The structure of this 
cost function makes it much easier to optimize than the earlier measure of periodicity in 
eq. (1). For instance, the matrix elements Aij(~) depend only on the equal-time and one­
sample-lagged cross-correlations, which do not need to be recomputed for different values 
of ~. Also, the channels Xi(t) appearing in this cost function are sampled at a clock rate 
on the order of fo, as opposed to the original sampling rate of the speech. Thus, the few 
cross-correlations that are required can be computed with many fewer operations. These 
properties lead to a more efficient algorithm than the one in the previous section. The im­
proved algorithm, working with baseband signals, estimates the pitch by optimizing eq. (5) 
over w and ~ for sliding windows of Xi (t). One problem still remains, however-the need 
to invert and diagonalize large numbers of n x n matrices, where the number of channels, n, 
may be prohibitively large. This final obstacle is removed in the next section. 

2.4 Hierarchical analysis 

We have developed a fast recursive algorithm to locate a good approximation to the min­
imum of eq. (5). The recursive algorithm works by constructing and diagonalizing 2 x 2 
matrices, as opposed to the n x n matrices required for an exact solution. Our approximate 
algorithm also provides a hierarchical analysis of the frequency spectrum that is interesting 
in its own right. A sketch of the algorithm is given below. 

The base step of the recursion estimates a value ~i for each individual channel by mini­
mizing the error of a sinusoidal fit: 

(6) 

The minimum of the right hand side can be computed by setting its derivative to zero and 
solving a quadratic equation in the variable ei~ •. If this minimum does not correspond to 
a legitimate value of fo E [fmin, fmax], the ith channel is discarded from future analysis, 
effectively setting its weight Wi to zero. Otherwise, the algorithm passes three arguments 
to a higher level of the recursion: the values of ~i and Ci (~i)' and the channel Xi (t) itself. 

The recursive step of the algorithm takes as input two auditory "substreams", Sl(t) 
and su(t), derived from "lower" and "upper" parts of the frequency spectrum, and re­
turns as output a single combined stream, s(t) = WISI(t) + wusu(t). In the first step 



Figure 2: Measures of pitch (fo) and periodicity (e l ) in nested regions of the frequency 
spectrum. The nodes in this tree describe periodic structure in the vowel luI from 400-
1080 Hz. The nodes in the first (bottom) layer describe periodicity cues in individual 
channels; the nodes in the kth layer measure cues integrated across 2k - l channels. 

of the recursion, the substreams correspond to individual channels Xi (t), while in the kth 
step, they correspond to weighted combinations of 2k - l channels. Associated with the 
substreams are phases, ~I and ~t" corresponding to estimates of fo from different parts 
of the frequency spectrum. The combined stream is formed by optimizing eq.(5) over the 
two-component weight vector, W = [WI , wu ]. Note that the eigenvalue problem in this case 
involves only a 2 x 2 matrix, as opposed to an n x n matrix. The value of ~ determines the 
period of the combined stream; in practice, we optimize it over the interval defined by ~I 
and ~u. Conveniently, this interval tends to shrink at each level of the recursion. 

The algorithm works in a bottom-up fashion. Channels are combined pairwise to form 
streams, which are in turn combined pairwise to form new streams. Each stream has a 
pitch period and a measure of periodicity computed by optimizing eq. (5). We order the 
channels so that streams are derived from contiguous (or nearly contiguous) parts of the fre­
quency spectrum. Fig. 2 shows partial output of this recursive procedure for a windowed 
segment of the vowel luI. Note how as one ascends the tree, the combined streams have 
greater periodicity and less variance in their pitch estimates. This shows explicitly how 
the algorithm integrates information across narrow frequency bands of speech. The recur­
sive output also suggests a useful representation for studying problems, such as speaker 
separation, that depend on grouping different parts of the spectrum by their estimates of fo. 

3 Experiments 

We investigated the performance of our algorithm in simple experiments on synthesized 
vowels. Fig. 3 shows results from experiments on the vowel luI. The pitch contours in these 
plots were computed by the recursive algorithm in the previous section, with f min = 80 Hz, 
fmax = 140 Hz, and 60 ms windows shifted in 10 ms intervals. The solid curves show 
the estimated pitch contour for the clean wideband waveform, sampled at 8 kHz. The 
left panel shows results for filtered versions of the vowel, bandlimited to four different 
frequency octaves. These plots show that the algorithm can extract the pitch from different 
parts of the frequency spectrum. The right panel shows the estimated pitch contours for the 
vowel in 0 dB white noise and four types of -20 dB bandlimited noise. The signal-to-noise 
ratios were computed from the ratio of (wideband) speech energy to noise energy. The 
white noise at 0 dB presents the most difficulty; by contrast, the bandlimited noise leads 
to relatively few failures , even at -20 dB. Overall, the algorithm is quite robust to noise 
and filtering. (Note that the particular frequency octaves used in these experiments had no 
special relation to the filters in our front end.) The pitch contours could be further improved 
by some form of smoothing, but this was not done for the plots shown. 
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Figure 3: Tracking the pitch of the vowel lui in corrupted speech. 

4 Discussion 

Many aspects of this work need refinement. Perhaps the most important is the initial filter­
ing into narrow frequency bands. While narrow filters have the ability to resolve individual 
harmonics, overly narrow filters-which reduce all speech input to sine waves~o not ad­
equately differentiate periodic versus noisy excitation. We hope to replace the Bark scale 
filterbank in Fig. 1 by one that optimizes this tradeoff. We also want to incorporate adapta­
tion and gain control into the front end, so as to improve the performance in non stationary 
listening conditions. Finally, beyond the problem of pitch tracking, we intend to develop 
the hierarchical representation shown in Fig. 2 for harder problems in phoneme recognition 
and speaker separation[7]. These harder problems seem to require a method, like ours, that 
decomposes the frequency spectrum into its periodic and non-periodic components. 
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