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Abstract 

We present an algorithm which compensates for the mismatches 
between characteristics of real-world problems and assumptions of 
independent component analysis algorithm. To provide additional 
information to the ICA network, we incorporate top-down selec­
tive attention. An MLP classifier is added to the separated signal 
channel and the error of the classifier is backpropagated to the 
ICA network. This backpropagation process results in estimation 
of expected ICA output signal for the top-down attention. Then, 
the unmixing matrix is retrained according to a new cost function 
representing the backpropagated error as well as independence. It 
modifies the density of recovered signals to the density appropriate 
for classification. For noisy speech signal recorded in real environ­
ments, the algorithm improved the recognition performance and 
showed robustness against parametric changes. 

1 Introduction 

Independent Component Analysis (ICA) is a method for blind signal separation. 
ICA linearly transforms data to be statistically as independent from each other as 
possible [1,2,5]. ICA depends on several assumptions such as linear mixing and 
source independence which may not be satisfied in many real-world applications. 
In order to apply ICA to most real-world problems, it is necessary either to release 
of all assumptions or to compensate for the mismatches with another method. 

In this paper, we present a complementary approach to compensate for the mis­
matches. The top-down selective attention from a classifier to the ICA network 
provides additional information of the signal-mixing environment. A new cost func­
tion is defined to retrain the unmixing matrix of the ICA network considering the 
propagated information. Under a stationary mixing environment, the averaged 
adaptation by iterative feedback operations can adjust the feature space to be more 
helpful to classification performance. This process can be regarded as a selective 
attention model in which input patterns are adapted according to top-down infor-



mation. The proposed algorithm was applied to noisy speech recognition in real 
environments and showed the effectiveness of the feedback operations. 

2 The proposed algorithm 

2.1 Feedback operations based on selective attention 

As previously mentioned, ICA supposes several assumptions. For example, one 
assumption is a linearly mixing condition, but in general, there is inevitable non­
linearity of microphones to record input signals. Such mismatches between the 
assumptions of ICA and real mixing conditions cause unsuccessful separation of 
sources. To overcome this problem, a method to supply valuable information to 
the rcA network was proposed. In the learning phase of ICA, the unmixing matrix 
is subject to the signal-mixing matrix, not the input patterns. Under stationary 
mixing environment where the mixing matrix is fixed, iteratively providing addi­
tional information of the mixing matrix can contribute to improving blind signal 
separation performance. The algorithm performs feedback operations from a clas­
sifier to the ICA network in the test phase, which adapts the unmixing matrices 
of ICA according to a newly defined measure considering both independence and 
classification error. This can result in adaptation of input space of the classifier and 
so improve recognition performance. This process is inspired from the selective at­
tention model [9,10] which calculates expected input signals according to top-down 
information. 

In the test phase, as shown in Figure 1, ICA separates signal and noise, and Mel­
frequency cepstral coefficients (MFCCs) extracted as a feature vector are delivered 
to a classifier, multi-layer perceptron (MLP). After classification, the error function 
of the classifier is defined as 

1~ 2 
E m1p = 2" L...,.(tmIP,i - Ymlp,i) , 

i 

(1) 

where tmlp,i is target value of the output neuron Ymlp,i. In general, the target 
values are not known and should be determined from the outputs Ymlp. Only the 
target value of the highest output is set to 1, and the others are set to -1 when the 
nonlinear function of the classifier is the bipolar sigmoid function. The algorithm 
performs gradient-descent calculation by error backpropagation. To reduce the 
error, it computes the required changes of the input values of the classifier and 
finally those of the unmixed signals of the ICA network. Then, the leaning rule 
of the ICA algorithm should be changed considering these variations. The newly 
defined cost function of the ICA network includes the error backpropagated term 
as well as the joint entropy H (Yica) of the outputs Yica. 

1 H 
Eica = -H(Yica) + 'Y. 2" (Utarget - u)(Utarget - u) 

1 H 
-H(Yica) + 'Y. 2"~u~u , (2) 

where u are the estimate recovered sources and 'Y is a coefficient which represents the 
relative importance of two terms. The learning rule derived using gradient descent 
on the cost function in Eq.(2) is 

~w ex: [I - <p(u)uH]W + 'Y. x~u, (3) 

where x are the input signals of the rcA network. The first term in Eq.(3) is the 
learning rule of ICA which is applicable to complex-valued data in the frequency 
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Figure 1: Real-world speech recognition with feedback operations from a classifier 
to the ICA network 

domain [8,11]. In real environments where substantial time delays occur, the ob­
served input signals are convolved mixtures of sources, not linear mixtures and the 
mixing model no longer is a matrix. In this case, blind signal separation using ICA 
can be achieved in the frequency domain. The complex score function is 

'P(z) = tanh(Re{z}) + j. tanh(Im{z}). (4) 

The procedure in the test phase is summarized as follows. 

1. For a test input, perform the forward operation and classify the pattern. 

2. Define the error function of the classifier in Eq. (1) and perform error back­
propagation to find the required changes of unmixed signals of ICA. 

3. Define the cost function of the ICA network in Eq.(2) and update unmixing 
matrix with the learning rule in Eq.(3). Then, go to step 1. 

The newly defined error function ofthe classifier in Eq.(l) does not cause overfitting 
problems because it is used for updating the unmixing matrix of ICA only once. 
If classification performance is good, the averaged changes of the unmixing matrix 
over the total input patterns can contribute to improving recognition performance. 

2.2 Considering the assumptions of ICA 

The assumptions of ICA [3,4,5] are summarized as follows. 



Figure 2: a nonlinear mixing model due to the distortions of microphones 

1. The sources are linearly mixed. 

2. The sources are mutually independent. 

3. At most, one source is normally distributed. 

4. The number of sensors is equal to or greater than the number of sources. 

5. No sensor noise or only low additive noise signals are permitted. 

The assumptions 4 and 5 can be released if there are enough sensors. The assump­
tion 3 is also negligible because the source distribution is usually approximated as 
super-Gaussian or Laplacian distributions in the speech recognition problem. 

As to speech recognition in real mixing environments, the nonlinearity of micro­
phones is an inevitable problem. Figure 2 shows a nonlinear mixing model, the 
nonlinear functions g(.) and h(·) denote the distortions of microphones. s are origi­
nal sources, x are observed signals, and u are the estimates of the recovered sources. 
If the sources 81 and 82 are mutually independent, the random variables 8r and 82 
are still independent each other, and so are Voo and VlO. The density of Zl = VOO+VlO 
equals the convolution of the densities of Voo and VlO [7]. 

= f Pvoo(Zl - VlO)PVIO(VlO)dvlO, 

P(Zl) = h~ . (5) 

After all, the observed signal Xl is not a linear mixture of two independent compo­
nents due to the nonlinear distortion h(·). The assumption of source independence 
is violated. In this situation, it is hard to expect what would be the leA solution 
and to assert the solution is reliable. Even if Xl has two independent components, 
which is the case of linear distortion of microphones, there is a conflict between in­
dependence and source density approximation because the densities of independent 
components of observed signals are different from those of original sources by g(.) 
and h(·), and may be far from the density approximated by f(·). 

The proposed algorithm can be a solution to this problem. In the training phase, a 
classifier learns noiseless data and the density of Xl used for the learning is 

p(81) 
p(xd = aoo h~g~ . (6) 

The second backpropagated term in the cost function Eq.(2) changes the unmixing 
matrix W to adapt the density of unmixed signals to the density that the classifier 



Table 1: The recognition rates of noisy speech recorded with F-16 fighter noise (%) 

Training data Test data 
SNR lJlean 15dB lOdB 5dB lJlean 15dB 10dB 5dB 
MLP 99.9 93.3 73.5 42.8 96.1 84.8 63.0 36.7 
leA 99.7 97.0 91.9 78.7 93.9 90.6 85.6 68.9 

The proposed 
algorithm 99.9 99.3 94.5 80.6 96.1 93.5 86.3 71.1 

learned. This can be a clue to what should be the leA solution. Iterative operations 
over the total data induce that the averaged change of the unmixing matrix becomes 
roughly a function of the nonlinearity g(.) and h(·), not a certain density P(Sl) 
subject to every pattern. 

3 Noisy Speech Recognition in Real Environments 

The proposed algorithm was applied to isolated-word speech recognition. The input 
data are convolved mixtures of speech and noise recorded in real environments. The 
speech data set consists of 75 Korean words of 48 speakers, and F-16 fighter noise 
and speech babbling noise were used as noise sources. Each leA network has two 
inputs and two outputs for the signal and noise sources. Tables 1 and 2 show the 
recognition results for the three methods: MLP only, MLP with standard leA, 
and the proposed algorithm. 'Training data' mean the data used for learning of 
the classifier, and 'Test data' are the rest. leA improves classification performance 
compared to MLP only in the heavy-noise cases, but in the cases of clean data, 
leA does not contribute to recognition and the recognition rates are lower than 
those of MLP only. The proposed algorithm shows better recognition performance 
than standard leA for both training and test data. Especially, for the clean data, 
the proposed algorithm improves the recognition rates to be the same as those of 
MLP only in most cases. The algorithm reduces the false recognition rates by about 
30% to 80% in comparison with standard leA when signal to noise ratios (SNRs) 
are 15dB or higher. With such low noise, the classification performance of MLP is 
relatively reliable, and MLP can provide the leA network for helpful information. 
However, with heavy noise, the recognition rates of MLP sharply decrease, and the 
error backpropagation can hardly provide valuable information to the leA network. 
The overall improvement for the training data is higher than that for the test data. 
This is because the the recognition performance of MLP is better for the training 
data. 

As shown in Figure 3, iterative feedback operations decrease the false recognition 
rates, and the variation of the unknown parameter '"Y in Eq.(2) doesn't affect the 
final recognition performance. The variation of the learning rate for updating the 
unmixing matrix also doesn't affect the final performance, and it only influences on 
the converging time to reach the final recognition rates. The learning rate was fixed 
regardless of SNR in all of the experiments. 

4 Discussion 

The proposed algorithm is an approach to complement leA by providing additional 
information based on top-down selective attention with a pre-trained MLP classi­
fier. The error backpropagation operations adapt the density of recovered signals 



Table 2: The recognition rates of noisy speech recorded with speech babbling noise 
(%) 

Training data Test data 
SNR lJlean 15dtl lOdtl 5dtl lJlean 15dtl 10dtl 5dtl 
MLP 99.7 88.6 61.5 32.6 96.8 82.9 64.5 38.5 
ICA 98.5 95.2 91.9 76.5 91.7 88.6 85.1 73.2 

The proposed 
algorithm 99.7 97.7 92.5 76.7 97.2 93.1 87.4 73.4 

according to the new cost function of ICA. This can help ICA find the solution 
proper for classification under the nonlinear and independence violations, but this 
needs the stationary condition. For nonstationary environments, a mixture model 
like the ICA mixture model [6] can be considered. The ICA mixture model can 
assign class membership to each environment category and separate independent 
sources in each class. To completely settle the nonlinearity problem in real envi­
ronment, it is necessary to introduce a scheme which models the nonlinearity such 
as the distortions of microphones. Multi-layered ICA can be an approach to model 
nonlinearity. 

In the noisy recognition problem, the proposed algorithm improved recognition per­
formance compared to ICA alone. Especially in moderate noise cases, the algorithm 
remarkably reduced the false recognition rates. This is due to the high classifica­
tion performance of the pre-trained MLP. In the case of heavy noise the expected 
ICA output estimated from the top-down attention may not be accurate, and the 
selective attention does not help much. It is natural that we only put attention to 
familiar subjects. Therefore more robust classifiers may be needed for signals with 
heavy noise. 
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Figure 3: The false recognition rates by iteration of total data and the value of the 
'Y parameter. (a) Clean speech; (b) SNR=15 dB; (c) SNR=lO dB; (d) SNR=5 dB 
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