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Abstract 

We describe an analogy between psychophysically measured effects 
in contrast masking, and the behavior of a simple integrate-and­
fire neuron that receives time-modulated inhibition. In the psy­
chophysical experiments, we tested observers ability to discriminate 
contrasts of peripheral Gabor patches in the presence of collinear 
Gabor flankers. The data reveal a complex interaction pattern that 
we account for by assuming that flankers provide divisive inhibi­
tion to the target unit for low target contrasts, but provide sub­
tractive inhibition to the target unit for higher target contrasts. 
A similar switch from divisive to subtractive inhibition is observed 
in an integrate-and-fire unit that receives inhibition modulated in 
time such that the cell spends part of the time in a high-inhibition 
state and part of the time in a low-inhibition state. The simi­
larity between the effects suggests that one may cause the other. 
The biophysical model makes testable predictions for physiological 
single-cell recordings. 

1 Psychophysics 

Visual images of Gabor patches are thought to excite a small and specific subset of 
neurons in the primary visual cortex and beyond. By measuring psychophysically 
in humans the contrast detection and discrimination thresholds of peripheral Gabor 
patches, one can estimate the sensitivity of this subset of neurons. Furthermore, 
spatial interactions between different neuronal populations can be probed by testing 
the effects of additional Gabor patches (masks) on performance. Such experiments 
have revealed a highly configuration-specific pattern of excitatory and inhibitory 
spatial interactions [1, 2]. 

1.1 Methods 

Two vertical Gabor patches with a spatial frequency of 4cyc/deg were presented at 
4 deg eccentricity left and right of fixation, and observers had to report which patch 
had the higher contrast (spatial 2AFC). In the "flanker condition" (see Fig. lA), 



the two targets were each flanked by two collinear Gabor patches of 40% contrast, 
presented above and below the targets (at a distance of 0.75 deg, i.e., 3 times the 
spatial period of the Gabor). 

Observers fixated a central cross, which was visible before and during each trial, and 
then initiated the trial by pressing the space bar on the computer keyboard. Two 
circular cues appeared for 180ms to indicate the locations of the two targets (to min­
imize spatial uncertainty). A blank stimulus of randomized length (500ms±100ms) 
was followed by a 83ms stimulus presentation. No mask was presented. Observers 
indicated which target had the higher contrast ("left" or "right") by specified keys. 
Auditory feedback was provided. 

Thresholds were determined using a staircase procedure [3]. Whenever the staircase 
procedure showed a ceiling effect (asking to display contrasts above 100%) the data 
for this pedestal contrast in this condition were not considered for this observer, 
even if at other days valid threshold estimates were obtained, because considering 
only the 'good days' would have introduced a bias. Seven observers with normal 
or corrected-to-normal vision participated in the experiment. Each condition was 
repeated at least six times. The experimental procedure is in accordance with 
Caltech's Committee for the Protection of Human Subjects. 

Experiments were controlled by an 02 Silicon Graphics workstation, and stimuli 
were displayed on a raster monitor. Mean luminance Lm was set to 40 cd/m2. We 
used color-bit stealing to increase the number of grey levels that can be displayed 
[4]. A gamma correction ensured linearity of the gray levels. 

To remove some of the effects of inter-observer variability from our data analysis, 
the entire data set of each observer was first normalized by his or her average 
performance across all conditions, and only then averages and standard errors were 
computed. The mean standard errors across all conditions and contrast levels are 
presented as bars in Figs. IB and ID. 

1.2 Results 

In the absence of flankers (circles, Fig. IB), discrimination thresholds first decrease 
from absolute detection threshold at 8.7% with increasing pedestal contrast and then 
increase again. As common in sensory psychophysics , we assume that the contrast 
discrimination thresholds can be derived from an underlying sigmoidal contrast­
response function r(c) (see Fig. lC, solid curve), together with the assumption that 
some fixed response difference ~r = 1 is required for correct discrimination [2]. 
In other words, for any fixed pedestal contrast c, the discrimination threshold ~c 
satisfies r(c + ~c) = r(c) + 1. 

Our underlying assumption is that at the decision stage, the level of noise in the 
signal is independent of the response magnitude. Neuronal noise, on the other hand, 
is usually well characterized by a Poisson process, that is, the noise level increases 
with increasing response. Little evidence exists, however, that this "early" response 
dependent noise actually limits the performance. It is conceivable that this early 
noise is relatively small, that the performance-limiting noise is added at a later 
processing stage, and that this noise is independent of the response magnitude. 

To describe the response r of the system to a single, well-isolated, target as a 
function of its contrast c we adopt the function suggested by Foley (1994) [2]: 

acP 
risolated(C) = r!,-q (1) 

cP- Q + th 

For plausible parameters (c, Cth > 0) this function is proportional to cP for c« Cth 
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Figure 1: (A) Sample stimuli without flanks and with flanks. (B) Discrimination 
thresholds average across seven observers for flanked (diamond) and unflanked (cir­
cles) targets. (C) Contrast response functions used for model prediction in (B). 
(D) Discrimination performance averaged across four observers for different flank 
contrasts. Lines in (B) and (D) represent the best model fit. 

and is proportional to cq for c » Cth, consistent with a modified Weber law [5]. 
The contrast-response function obtained for the parameters given in the first row of 
Tab. 1 is shown in Fig. lC (solid line). The corresponding discrimination thresholds 
(Fig. 1Bi solid line) fit well the psychophysical data (open circles). 

What happens to the dipper function when the two targets are flanked by Ga­
bor patches of 40% contrast? In the presence of flankers, contrast discrimination 
thresholds (diamonds, Fig. IB) first decrease, then increase, then decrease again, 
and finally increase again, following a W-shaped function. Depending on target con­
trast, one can distinguish two distinctive flanker effects: for targets of 40% contrast 
or less, flankers impair discrimination. In the masking literature such suppressive 
effects are often attributed to a divisive input from the mask to the target; in other 
words, the flanks seem to reduce the target's gain [2]. For targets of 50% or more 
(four rightmost data points in Fig. IB), contrast performance is about the same 
irrespective of whether flankers are present or not; at these high target contrasts, 
flankers apparently cease to contribute to the target's gain control. 

Following this concept, we define two model parameters to describe the effects of the 
flankers: the first parameter, Co, determines the maximal target contrast at which 
gain control is still effective; the second parameter, b, determines the strength of 



the gain control. Formally written, we obtain: 

( ) _ {riSolated (C) I b for C :::; Co, (gain control) 
rflanked C -

risolated (c) - d for C ~ Co, (no gain control) 
(2) 

In the low-contrast range, the contrast-response functions with and without flankers 
are multiples of each other (factor b); in the high-contrast regime, the two curves 
are shifted vertically (offset d) with respect to each other (see Fig. 1C). The sub­
tractive constant d is not a free parameter, but is determined by imposing that r 
be continuous at C = Co, i.e., risolated (co) Ib = risolated (co) - d. 

The parameters that best account for the average data in Figs. 1B and 1D in the 
least-mean-square sense were estimated using a multidimensional simplex algorithm 
[6]. 

Table 1: Best fitting model parameters in the least-square sense. 

no flanks 20% flanks 40% flanks 70% flanks 
a Cth p q b Co b Co b Co 

Fig. lEC 0.363 7.14% 4.47 0.704 - - 1.86 46.8% - -

Fig. 1D 0.395 6.07% 3.78 0.704 1.69 26.4% 1.78 44.9% 2.01 64.3% 

Increasing the flanker contrast leads both to an increase in the strength of gain 
control b and to an increase in the range Co in which gain control is effective. The 
predicted discrimination performance is shown superimposed on the data in Fig. 1B 
and D. As one can see, the model captures the behavior of the data reasonably 
well, considering that for each combined fit there are only four parameters to fit the 
unflanked data and two additional parameters for each W curve. Or, put differently, 
we use but two degrees of freedom to go from the unflanked to the flanked conditions. 

2 Biophysics 

While the above model explains the data, it remains a puzzle how the switch from di­
visive to subtractive is implemented neuronally. Here, we show that time-modulated 
inhibition can naturally account for the observed switch, without assuming input­
dependent changes in the network. 

2.1 Circuit Model 

II I II 
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Figure 2: Circuit model used for the simulations. 

To simulate the behavior of individual neurons we use a variant of the leaky 
integrate-and-fire unit (battery Ee = 70mV, capacitance C = 200pF, leak con­
ductance 9pass = IOnS, and firing threshold vth = 20mV, see Fig. 2). 



Excitatory and inhibitory synaptic input are modeled as changes in the conduc­
tances ge and gi, respectively. Whenever the membrane potential Vm exceeds thresh­
old (Vih), a spike is initiated and the membrane potential Vm is reset to v;.est = O. 
No refractory period was assumed. The model was implemented on a PC using the 
programming language C. 

2.2 Simulations 

Firing rates for increasing excitation (ge) at various levels of inhibtion (gi) are shown 
in Fig. 3A. For low excitatory input the cell never fires, because the input current is 
counter-balanced by the leakage current, thus preventing the cell from reaching its 
firing threshold. Once the cell does start firing, firing rates first increase very fast, 
but then rapidly converge against a linear function, whose slope is independent of 
gi. When the inhibitory input is modulated in time and switches between a low 

A B 
N 
JC4oor---------------------~400r---------------------~ 

c 

~300 
c 
(\) 

~200 
0-
(\) ..... 

u.. 100 
(\) 

.::t:. 

-9j=OnS 

-9j = 10nS 

'0.. 0 "--__ ........ __ .L-~....l..._~ ____ ~ __ _' 

C/) 0 5 10 15 20 
ge in nS 

100 

20ns, 
9j OnS rrnn m 0 DDm 

Oms 100ms 200ms 

-9j =OnS 

5 10 15 
ge in nS 

20 

Figure 3: Simulations of circuit model with constant inhibition (A) or time­
mdoulated inhbition (dashed line in (B)). This simple single-cell model matches 
the psychophysics remarkably well. 

inhibition state (gi = glow) and a high inhibition state (gi = ghigh), the results look 
different (Fig. 3B, dashed line). The cell fires part of the time like a lowly inhibited 
cell, part of the time like a highly inhibited cell, explaining why the overall firing rate 
resemble weighted averages of the curves for constant gi. A comparison of the no­
inhibition curve (gj = 0) and the curve for time-modulated inhbition demonstrates 
that inhibition switches from a divisive mode to a subtractive mode for increasing 
ge. The ge-Ievel at which the switch occurs depends on the level of inhibition in the 
high-inhibition state (here ghigh=20nS). The strength of divisive inhibition depends 
on the percentage of time R that the cell spends in the high-inhibition state; in the 
example shown as a dashed line in Fig. 2B, the cell spends on average half of the 
time in the high-inhibition stage (thus R=50%), and remains the rest of the time 
in the low-inhibition stage. 

3 Discussion 

Both the psychophysical data and the biophysical model show a switch from divi­
sive to subtractive inhibition. Making the connection between psychophysics and 



biophysics explicitly, requires that a number of assumptions be made: (1) the ex­
citatory input ge to the target unit increases with increasing target contrast; (2) 
increasing the flank contrast leads to an increase of 9high (to account for the fact 
that the transition from divisive to subtractive inhibition occurs at higher contrasts 
co); (3) the relative time spent in the 9high state (R) increases with flanker contrast 
(leading to a stronger divisive inhibition b that is reflected in the overall performance 
decrease with increasing flanker contrast). 

While these assumptions all seem quite plausible, there remains the question of why 
one would assume time-modulated inhbition in the first place. Here we suggest three 
different mechanisms: First, the time-modulation might reflect inhibitory input by 
synchronized interneurons [7], i.e., sometimes a large number of them fire at the 
same time (high-inhibition state) while at other times almost none ofthe inhibitory 
cells fire (low-inhibition state). 

A second plausible implementation (which gives very similar results) assumes that 
there is only one transition and that the low- and high-inhibition state follow each 
other sequentially (rather than flipping back and forth as suggested in Fig. 3B). 
Indeed, cells in primary visual cortex often show a transient response at stimulus 
onset (which may reflect the low-inhibition state), followed by a smaller level of 
sustained response (which may reflect the high-inhibition state). In this context, R 
would simply reflect the time delay between the onset of excitation and inhibition 
(with a large R representing brief delays before inhibition sets in). 

Finally, low- and high- inhibition states may reflect different subtypes of neurons 
which receive different amount of surround inhibition. In other words, some neurons 
are strongly inhibited (high-inhibition state) while others are not (low-inhibition 
state). The ratio of strongly-inhibited units (among all units) is given by R. The 
mean response of all the neurons will show a divisive inhibition in the range where 
the inhibited neurons are shut off completely, but will show a subtractive inhibition 
as soon as the inhibited units start firing. 

To summarize on a more abstract level: any mechanism that will average firing 
rates of different 9i states, rather than averaging different inhibitory inputs 9i, will 
lead to a mechanism that shows this switch from divisive to subtractive inhibition. 

The remaining differences between the psychophysically estimated contrast-response 
functions (Fig. Ie) and the firing rates of the circuit model (Fig. 3B) seem to 
reflect mainly oversimplifications in the biophysical model. Saturation at high ge 
values, for instance, could be achieved by assuming refractory periods or other 
firing-rate adaptation mechanisms. The very steep slope directly after the switch 
from divisive to subtractive inhibition would disappear if the simple integrate-and­
fire unit would be replaced by a more realistic unit in which - due to stochastic 
linearization - the firing rate rises more gradually once the threshold is crossed. 
In any case, one does not expect a precise match between the two functions, as 
psychophysical performance presumably relies on a variety of different neurons with 
different dynamic ranges. Once the model includes many neurons, one would need to 
define decision strategies. We believe that such a link between a biophysical model 
and psychophysical data is in principle possible, but have favored here simplicity at 
the expense of achieving a more quantitative match. 

Our analysis of the circuit model shows that the psychophysical data can be ex­
plained without assuming complex interaction patterns between different neuronal 
units. While we have no reason to believe that the switching-mechanism from divi­
sive to subtractive inhibition will become ineffective when considering large number 
of neurons, it does not require a large network. Our model suggests that the critical 
events happen at the level of individual neurons, and not in the network. 



Our model makes two clear predictions: first, the contrast-response function of 
single neurons should show - in the presence of flankers - a switch from divisive 
to subtractive inhibition (Fig. lC and Fig. 3B). Physiological studies have measured 
how stimuli outside the classical receptive field affect the absolute response level of 
the target unit [8, 9]. Distinguishing subtractive and divisive inhibition, however, 
requires that, in addition, surround effects on the slope of the contrast-response 
functions are estimated. Such experiments have been carried out by Sengpiel et al 
[10] in cat primary visual cortex. Their extracellular recordings show that when a 
target grating is surrounded by a high-contrast annulus, inhibition is indeed well 
described by a divisive effect on the response. It remains to be seen, however, 
whether surround annuli whose contrast is lower than the target contrast will act 
subtractively. The second prediction is that inhibition is bistable, i.e., that there are 
distinct low- and high-inhibition states. These states may alternate in time within 
the same neuron, or they may be represented by different subsets of neurons. 
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