From Mixtures of Mixtures to Adaptive Transform Coding

Part of Advances in Neural Information Processing Systems 13 (NIPS 2000)

Bibtex Metadata Paper

Authors

Cynthia Archer, Todd K. Leen

Abstract

We establish a principled framework for adaptive transform cod(cid:173) ing. Transform coders are often constructed by concatenating an ad hoc choice of transform with suboptimal bit allocation and quan(cid:173) tizer design. Instead, we start from a probabilistic latent variable model in the form of a mixture of constrained Gaussian mixtures. From this model we derive a transform coding algorithm, which is a constrained version of the generalized Lloyd algorithm for vector quantizer design. A byproduct of our derivation is the introduc(cid:173) tion of a new transform basis, which unlike other transforms (PCA, DCT, etc.) is explicitly optimized for coding. Image compression experiments show adaptive transform coders designed with our al(cid:173) gorithm improve compressed image signal-to-noise ratio up to 3 dB compared to global transform coding and 0.5 to 2 dB compared to other adaptive transform coders.