Propagation Algorithms for Variational Bayesian Learning

Part of Advances in Neural Information Processing Systems 13 (NIPS 2000)

Bibtex Metadata Paper

Authors

Zoubin Ghahramani, Matthew J. Beal

Abstract

Variational approximations are becoming a widespread tool for Bayesian learning of graphical models. We provide some theoret(cid:173) ical results for the variational updates in a very general family of conjugate-exponential graphical models. We show how the belief propagation and the junction tree algorithms can be used in the inference step of variational Bayesian learning. Applying these re(cid:173) sults to the Bayesian analysis of linear-Gaussian state-space models we obtain a learning procedure that exploits the Kalman smooth(cid:173) ing propagation, while integrating over all model parameters. We demonstrate how this can be used to infer the hidden state dimen(cid:173) sionality of the state-space model in a variety of synthetic problems and one real high-dimensional data set.