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Abstract 

The standard reinforcement learning view of the involvement 
of neuromodulatory systems in instrumental conditioning in­
cludes a rather straightforward conception of motivation as 
prediction of sum future reward. Competition between actions 
is based on the motivating characteristics of their consequent 
states in this sense. Substantial, careful, experiments reviewed 
in Dickinson & Balleine, 12,13 into the neurobiology and psychol­
ogy of motivation shows that this view is incomplete. In many 
cases, animals are faced with the choice not between many dif­
ferent actions at a given state, but rather whether a single re­
sponse is worth executing at all. Evidence suggests that the 
motivational process underlying this choice has different psy­
chological and neural properties from that underlying action 
choice. We describe and model these motivational systems, 
and consider the way they interact. 

1 Introduction 

Reinforcement learning (RL 28) bears a tortuous relationship with historical and 
contemporary ideas in classical and instrumental conditioning. Although RL 
sheds important light in some murky areas, it has paid less attention to re­
search concerning the motivation of stimulus-response (SR) links. RL methods 
are mainly concerned with preparatory Pavlovian (eg secondary) conditioning, 
and, in instrumental conditioning, the competition between multiple possible 
actions given a particular stimulus or state, based on the future rewarding or 
punishing consequences of those actions. These have been used to build suc­
cessful and predictive models of the activity of monkey dopamine cells in con­
ditioning. 22,24 By contrast, SR research starts from the premise that, in many 
circumstances, given an unconditioned stimulus (US; such as a food pellet), 
there is only one natural set of actions (the habit of approaching and eating 
the food), and the main issue is whether this set is worth executing (yes, if hun­
gry, no if sated). This is traditionally conceived as a question of consummatory 
motivation. SR research goes on to study how these habits, and also the mo­
tivation associated with them, are 'attached' in an appropriately preparatory 
sense to conditioned stimuli (CSs) that are predictive of the USs. 
The difference between RL's competition between multiple actions and SR's 
motivation of a single action might seem trivial, particularly if an extra, nUll, 
action is included in the action competition in RL, so the subject can actively 
choose to do nothing. However, there is substantial evidence from experi-



ments in which drive states (eg hunger, thirst) are manipulated, that moti­
vation in the SR sense works in a sophisticated, intrinsically goal-sensitive, 
way and can exert unexpected effects on instrumental conditioning. By com­
parison with RL, psychological study of multiple goals within single environ­
ments is quite advanced, particularly in experiments in which one goal or set 
of goals is effective during learning, and another during performance. Based 
on these and other studies, (and earlier theoretical ideas from, amongst others, 
Konorski, 18,19 Dickinson, Balleine and their colleagues13 have suggested that 
there are really two separate motivational systems, one associated with Pavlo­
vian motivation, as in SR, and one associated with instrumental action choice. 
They further suggest, partly based on related suggestions by Berridge and his 
colleagues,? that only the Pavlovian system involves dopamine. Neither the 
Pavlovian nor the instrumental system maps cleanly onto the standard view 
of RL, and the suggestion about dopamine would clearly Significantly damage 
the RL interpretation of the involvement of this neuromodulatory system in 
conditioning. 
In this paper, we describe some of the key evidence supporting the differ­
ence between instrumental and Pavlovian motivation (see also Balkenius3 and 
Spier25 ), and expand the model of RL in the brain to incorporate SR motiva­
tion and concomitant evidence on intrinsic goal sensitivity (as well as intrinsic 
habits). Some of the computational properties of this new model turn out to 
be rather strange - but this is a direct consequence of equivalently strange 
observable behavior. 

2 Theoretical and Experimental Background 

Figure 1 shows a standard view of the involvement of the dopamine system in 
RL. 22,24 Dopamine neurons in the ventral tegmental area (VTA) and substantia 
nigra pars compacta (SN c) report the temporal difference (TD) error 8 (t). In the 
simplest version of the theory, this is calculated as 8 (t) = r (t) + V 1T(x( t + 1» -
V 1T(x( t) ), where r (t) is the value of the reward at time t, x( t) is an internal 
representation of the state at time t, V 1T(x( t» is the expectation of the sum 
total future reward expected by the animal based on starting from that state, 
following policy IT, and the transition from x( t) to x( t + 1) is occasioned by the 
action a selected by the subject. In the actor-critic6 version of the dopamine 
theory, this TD error signal is put to two uses. One is adapting parameters that 
underlie the actual predictions V 1T(x(t». For this, 8(t) > 0 if the prediction 
from the state at time t, V 1T(x(t», is overly pessimistic with respect to the sum 
of the actual reward, r (t), and the estimated future reward, V 1T(x( t + 1», from 
the subsequent state. The other use for 8 (t) is criticizing the action a adopted 
at time t. For this, 8(t) > 0 implies that the action chosen is worth more than 
the average worth of x(t), and that the overall policy IT of the subject can 
therefore be improved by choosing it more often. In a Q-Iearning31 version of 
the theory, Q 1T(X, a) values are learned using an analogous quantity to 8 (t), for 
each pair of states x and actions a, and can directly be used to choose between 
the actions to improve the policy. 
Even absent an account for intrinsic habits, three key paradigms show the 
incompleteness of this view of conditioning: appetitive Pavlovian-instrumental 
transfer,15 intrinsic drive preference under speCific deprivation states,8 and 
incentive learning, as in the control of chains of instrumental behavior. 5 

The SR view of conditioning places its emphasis on motivational control of 
a prepotent action. That is, the natural response associated with a stimulus 
(presumably as output by an action specification mechanism) is only elicited if 
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Figure 1: Actor-critic version of the standard RL model. A) Evaluator: A TD error 
signal 8 to learn V1T(x) to match the sum of future rewards r, putatively via the ba­
solateral nuclei of the amygdala, the orbitofrontal cortex and the nucleus accumbens. 
B) Instrumental controller: The TD error 8 is used to choose, and teach the choice 
of, appropriate actions a to maximize future reward based on the current state and 
stimuli, putatively via the dorsolateral prefrontal cortex and the dorsal striatum. 

it is motivationally appropriate, according to the current goals of the animal. 
The suggestion is that this is mediated by a separate motivational system. USs 
have direct access to this system, and CSs have learned access. A conclusion 
used to test this structure for the control of actions is that this motivational 
system could be able to energize any action being executed by the animal. Ap­
petitive Pavlovian-instrumental transfer15 shows exactly this. Animals execut­
ing an action for an outcome under instrumental control, will perform more 
quickly when a CS predictive of reward is presented, even if the CS predicts 
a completely different reward from the instrumental outcome. This effect is 
abolished by lesions of the shell of the nucleus accumbens,10 one of the main 
targets of DA from the VTA. The standard RL model offers no account of the 
speed or force of action (though one could certainly imagine various possible 
extensions), and has no natural way to accommodate this finding. * 
The second challenge to RL comes from experiments on the effects of changing 
speCific and general needs for animals. For instance, Berridge & Schulkin8 first 
gave rats sucrose and saline solutions with one of a bitter (quinine) and a sour 
(citric) taste. They then artificially induced a strong physiological requirement 
for salt, for the first time in the life of the animal. Presented with a choice 
between the two flavors (in plain water, ie in extinction), the rats preferred to 
drink the flavor associated with the salt. Furthermore, the flavor paired with 
the salt was awarded positive hedonic reactions, whereas before pairing (and 
if it had been paired with sucrose instead) it was treated as being aversive. 
The key feature of this experiment is that this preference is evident without 
the opportunity for learning. Whereas the RL system could certainly take the 
physiological lack of salt as helping determine part of the state x(t), this could 
only exert an effect on behavior through learning, contrary to the evidence. 

The final complexity for standard RL comes from incentive learning. One 
paradigm involves a sequential chain of two actions (a1 and a2) that rats had 
to execute in order to get a reward.5 The subjects were made hungry, and were 
first trained to perform action a2 to get a particular reward (a Noyes pellet), 
and then to perform the chain of actions a1 - a2 to get the reward. In a final 
test phase, the animals were offered the chance of executing a1 and a2 in ex­
tinction, for half of them when they were still hungry; for the other half when 
they were sated on their normal diet. Figure 2A shows what happens. Sated 
animals perform a1 at the same rate as hungry animals, but perform a2 sig-

*Note that aversive Pavlovian instrumental transfer, in the form of the suppression 
of appetitive instrumental responding, is the conventional method for testing aversive 
Pavlovian conditioning. There is an obvious motivational explanation for this as well 
as the conventional view of competition between appetitive and protective actions. 
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Figure 2: Incentive learning. A) Mean total actions al and a 2 for an animal trained 
on the chain schedule al - a2 -Noyes pellets. Hungry and sated rats perform al at 
the same rate, but sated animals fail to perform a 2. B) Mean total actions when sated 
following prior re-exposure to the Noyes pellets when hungry ('hungry-sated') or when 
sated (,sated-sated'). Animals re-exposed when sated are significantly less willing to 
perform a 2. Note the change in scale between A and B. Adapted from Balieine et a/. 5 

nificantly less frequently. Figure 2B shows the basic incentive learning effect. 
Here, before the test, animals were given a limited number of the Noyes pel­
lets (without the availability of the manipulanda) either when hungry or when 
sated. Those who experienced them hungry ('hungry-sated') show the same 
results as the 'sated' group of figure 2A; whereas those who experienced them 
sated (,sated-sated') now declined to perform action al either. 

This experiment makes two points about the standard RL model. First, the 
action nearest to the reward (a2) is affected by the deprivation state without 
additional learning. This is like the effect of specific deprivation states dis­
cussed above. Second is that a change in the willingness to execute al happens 
after re-exposure to the Noyes pellets whilst sated; this learning is believed to 
involve insular cortex (part of gustatory neocortex4). That re-exposure directly 
affects the choice of al suggests that the instrumental act is partly determined 
by an evaluation of its ultimate consequence, a conclusion that relates to a 
long-standing psychological debate about the 'cognitive' evaluation of actions. 
Dickinson & Balleine13 suggest that the execution of a2 is mainly controlled 
by Pavlovian contingencies, and that Pavlovian motivation is instantly sensi­
tive to goal devaluation via satiation. At this stage in the experiment, however, 
al is controlled by instrumental contingencies. By comparison with Pavlo­
vian motivation, instrumental motivation is powerful (since it can depend on 
response-outcome expectancies), but dumb (since, without re-exposure, the 
animal works hard doing al when it wouldn't be interested in the food in any 
case). Ultimately, after extended training,14 in the birth of a new habit, al 
becomes controlled by Pavlovian contingencies too, and so becomes directly 
sensitive to devaluation. t 

3 New Model 

These experiments suggest some major modifications to the standard RL view. 
Figure 3 shows a sketch of the new model, whose key principles include 

• Pavlovian motivation (figure 3A) is associated with prediction error 
8(t) = r(t) + VTT(X(t + 1)) - VTT(x(t) 

for long term expected future rewards VTT(X, a), given a policy IT. Adopt­
ing this makes the model account for the classical conditioning paradigms 
explained by the standard RL model. 

t It is not empirically clear whether actions that have become habits are completely 
automatic1 or are subject to Pavlovian motivational influences. 
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Figure 3: Tripartite model. A) Evaluator: USs are evaluated by a hard-wired evaluation 
system (HE) which is intrinsically sensitive to devaluation. USs can also be evaluated 
via a plastic route, as in figure 1, but which nevertheless has prior biases. CSs undergo 
Pavlovian stimulus substitution with the USs they predict, and can also be directly eval­
uated through the learned route. The two sources of information for VTT(x) compete, 
forcing the plastic route to adjust to the hard-wired route. B) Habit system: The SR 
mapping suggests an appropriate action based on the state X; the vigor of its execu­
tion is controlled by dopaminergic 8, putatively acting via the shell of the accumbens. 
C) Instrumental controller: Action choice is based on advantages, which are learned, 
putatively via the core of the accumbens. Prefrontal working memory is used to unfold 
the consequences of chosen actions. 

• ret) is determined by a devaluation-sensitive, 'hard-wired', US evaluator that 
provides direct value information about motivationally inappropriate USs. 

• 8(t), possibly acting through the shell of the accumbens, provides Pavlovian 
motivation for pre-wired and new habits (figure 3B), as in Pavlovian instru­
mental transfer. 

• V 1T(x(t) is determined by two competing sources: one as in the standard 
model (involving the basolateral nuclei of the amygdala and the orbitofrontal 
cortex (OFC),16,23 and including prior biases (sweet tasting foods are appet­
itive) expressed in the connections from primary taste cortex to oFC and 
the amygdala; the other, which is primary, dependent largely on a stimulus 
substitution20 relationship between CSs and USs, that is also devaluation­
dependent. The latter is important for ultimate Pavlovian control over ac­
tions; the former for phenomena such as secondary conditioning, which are 
known to be devaluation independentY Figure 4A (dashed) shows the con­
tribution of the hard-wired evaluation route, via stimulus-substitution, on the 
prediction of value in classical conditioning. Here, stimulus-substitution was 
based on a form of Hebbian learning with a synaptic trace, so the shorter the 
CS-US interval, the greater the HE component. This translates into greater im­
mediate sensitivity to devaluation, the main characteristic of the hard-wired 
route. The plastic route via the amygdala takes responsibility for the remain­
der of the prediction; and the sum prediction is always correct (solid line). 

• Short-term storage of predictive stimuli in prefrontal working memory is 
gated9 by 8(t), so can also be devaluation dependent. 

• Instrumental motivation depends on policy-based advantages (3C; Baird2) 
A 1T(x,a) = Q 1T(x,a) - V1T(X) 

trained by the error signal 
8A (t) = 8(t) -A1T(x,a) 

Over the course of policy improvement, the advantage of a sub-optimal action 
becomes negative, and of an optimal action tends to O. The latter offers a 
natural model of the transition from instrumental action selection to an SR 
habit. Note that, in this actor-critic scheme, some aspects of advantages are 
not necessary, such as the normalizing updates. 
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Figure 4: A) Role of the hard-wired route (dashed line), via stimulus-substitution, in 
predicting future reward (r = 1) as a function of the CS-US interval. The solid line shows 
that the net prediction is always correct. B) Advantages of useful (a) and worthless (b) 
actions at the start state Xo. C) Evolution of the value of Xo over learning. The solid line 
shows the mean value; the dashed line the hard-wired component, providing immedi­
ate devaluation sensitivity. 0) Construction of A7T(xo, a) via a successor representation 
componentll (dashed) and a conventionally learned component (dotted). The former 
is sensitive to re-exposure devaluation, as in figure 2B. B-D) Action a produces reward 
r = 1 with probability 0.9 after 3 timesteps; curves are averages over 2000 runs. 

Figure 4B;C show two aspects of instrumental conditioning. Two actions com­
pete at state xo, one, a, with a small cost and a large future payoff; the other, 
b, with no cost and no payoff. Figure 4B shows the development of the advan­
tages of these actions over learning. Action a starts looking worse, because 
it has a greater immediate cost; its advantage increases as the worth of a 
grows greater than the mean value of xo, and then goes to 0 (the birth of the 
habit) as the subject learns to choose it every time. Figure 4C shows the value 
component of state Xo. This comes to be responsible for the entire prediction 
(as A1T(XO, a) ~ 0). As in figure 4A, there is a hard-wired component to this 
value which would result in the immediate decrement of response evident in 
figure 2A. 

• On-line action choice is dependent on 8A (t) as in learned klinokinesis.21 In­
centive learning in chains suggests that the representation underlying the ad­
vantage of an action includes information about its future consequences, ei­
ther through an explicit model,27,29 a successor representation,ll or perhaps 
a form of f3-model. 26 One way of arranging this would use a VTE-like30 mech­
anism for proposing actions (perhaps using working memory in prefrontal 
cortex), in order to test their advantages. Figure 4D shows the consequence of 
using a learned successor representation underlying the advantage A1T(XO, a) 
shown in figure 4B. The dashed line shows the component of A1T(XO, a) de­
pendent on a learned successor representation, and the prior bias about the 
value of the reward, and which is therefore sensitive to re-exposure (when 
the value accorded to the reward is decreased); the dotted line shows the re­
maining component of A 1T(XO, a), learned in the standard way. Re-exposure 
sensitivity (ie incentive learning) will exist over roughly iterations 25 - 75 . 

• SR models also force consideration of the repertoire of possible actions or re­
sponses available at a given state (figure 3B;C). We assume that both cortico­
cortical and cortico-(dorsal) striatal plasticity sculpt this collection, using 
8A (t) directly, and maybe also correlational learning rules. 

The details of the model are not experimentally fully determined, although 
its general scheme is based quite straightforwardly from the experimental ev­
idence referred to (and many other experiments), and by consistency with the 
activity of dopamine cells (recordings of which have so far used only a single 
motivational state). 



4 Discussion 

Experiments pose a critical challenge to our understanding of the psycholog­
ical and neural implementation of reinforcement learning, 12,13 suggesting the 
importance of two different sorts of motivation in controlling behavior. With 
both empirical and theoretical bases, we have put these two aspects together 
through the medium of advantages. The most critical addition is a hard-wired, 
stimulus-substitution sensitive, route for the evaluation of stimuli and states, 
which competes with a plastic route through the amygdala and the oFC. This 
hard-wired route has the property of intrinsic sensitivity to various sorts of 
devaluation, and this leads to motivationally appropriate behavior. The com­
putational basis of the new aspects of the model focus on motivational control 
of SR links (via VTT ), to add to motivational control of instrumental actions (via 
ATT). We also showed the potential decomposition of the advantages into a 
component based on the successor representation and therefore sensitive to 
re-exposure as in incentive learning, and a standard, learned, component. 
The model is obviously incomplete, and requires testing in richer environ­
ments. In particular, we have yet to explore how habits get created from ac­
tions as the maximal advantage goes to o. 
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