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Abstract

We introduce a new type of Self-Organizing Map (SOM) to navigate
in the Semantic Space of large text collections. We propose a “hyper-
bolic SOM” (HSOM) based on a regular tesselation of the hyperbolic
plane, which is a non-euclidean space characterized by constant negative
gaussian curvature. The exponentially increasing size of a neighborhood
around a point in hyperbolic space provides more freedom to map the
complex information space arising from language into spatial relations.
We describe experiments, showing that the HSOM can successfully be
applied to text categorization tasks and yields results comparable to other
state-of-the-art methods.

1 Introduction

For many tasks of exploraty data analysis the Self-Organizing Maps (SOM), as introduced
by Kohonen more than a decade ago, have become a widely used tool [1, 2]. So far, the
overwhelming majority of SOM approaches have taken it for granted to use a flat space
as their data model and, motivated by its convenience for visualization, have favored the
(suitably discretized) euclidean plane as their chief “canvas” for the generated mappings.

However, even if our thinking is deeply entrenched with euclidean space, an obvious limit-
ing factor is the rather restricted neighborhood that “fits” around a point on a euclidean 2D
surface. Hyperbolic spaces in contrast offer an interesting loophole. They are characterized
by uniform negative curvature, resulting in a geometry such that the size of a neighborhood
around a point increases exponentially with its radius � . This exponential scaling behavior
allows to create novel displays of large hierarchical structures that are particular accessible
to visual inspection [3, 4].

Consequently, we suggest to use hyperbolic spaces also in conjunction with the SOM. The
lattice structure of the resulting hyperbolic SOMs (HSOMs) is based on a tesselation of
the hyperbolic space (in 2D or 3D) and the lattice neighborhood reflects the hyperbolic
distance metric that is responsible for the non-intuitive properties of hyperbolic spaces.



After a brief introduction to the construction of hyperbolic spaces we describe several com-
puter experiments that indicate that the HSOM offers new interesting perspectives in the
field of text-mining.

2 Hyperbolic Spaces

Hyperbolic and spherical spaces are the only non-euclidean geometries that are homoge-
neous and have isotropic distance metrics [5, 6]. The geometry of H2 is a standard topic in
Riemannian geometry (see, e.g. [7]), and the relationships for the area

�
and the circum-

ference � of a circle of radius � are given by
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�������
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These formulae exhibit the highly remarkable property that both quantities grow exponen-
tially with the radius � . It is this property that was observed in [3, 4] to make hyperbolic
spaces extremely useful for accommodating hierarchical structures.

To use this potential for the SOM, we must solve two problems:
� � � we must find suitable

discretization lattices on H2 to which we can “attach” the SOM prototype vectors.
� �!� �

after having constructed the SOM, we must somehow project the (hyperbolic!) lattice into
“flat space” in order to be able to inspect the generated maps.

2.1 Projections of Hyperbolic Spaces

To construct an isometric (i.e., distance preserving) embedding of the hyperbolic plane into
a “flat” space, we may use a Minkowski space [8]. In such a space, the squared distance " �
between two points

�$# ��%&��'&� and
� #&( ��% ( ��' ( � is given by
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i.e., it ceases to be positive definite. Still, this is a space with zero curvature and its some-
what peculiar distance measure allows to construct an isometric embedding of the hyper-
bolic plane H2, given by
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where
�$2 � 7 � are polar coordinates on the H2. Under this embedding, the hyperbolic plane

appears as the surface < swept out by rotating the curve ' � �)= - # � - % �
about the ' -axis.
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Figure 1: Construction steps underlying
Klein and Poincaré-models of the space H2

From this embedding, we can construct two fur-
ther ones, the so-called Klein model and the
Poincaré model [5, 9] (we will use the latter to
visualize HSOMs below). Both achieve a pro-
jection of the infinite H2 into the unit disk, how-
ever, at the price of distorting distances. The
Klein model is obtained by projecting the points
of < onto the plane ' �>=

along rays passing
through the origin ? (see Fig. 1). Obviously,
this projects all points of < into the “flat” unit
disk

# � - % �A@ =
of B C �

. (e.g.,
�EDF G

).
The Poincaré Model results if we add two fur-
ther steps: first a perpendicular projection of
the Klein Model onto the (“northern”) surface
of the unit sphere centered at the origin (e.g.,GHDF � ), and then a stereographic projection of the “northern” hemisphere onto the unit

circle about the origin in the ground plane ' �JI
(point K ). It turns out that the result-

ing projection of H2 has a number of pleasant properties, among them the preservation of



angles and the mapping of shortest paths onto circular arcs belonging to circles that inter-
sect the unit disk at right angles. Distances in the original H2 are strongly distorted in its
Poincaré (and also in the Klein) image (cf. Eq. (5)), however, in a rather useful way: the
mapping exhibits a strong “fish-eye”-effect. The neighborhood of the H2 origin is mapped
almost faithfully (up to a linear shrinkage factor of 2), while more distant regions become
increasingly “squeezed”. Since asymptotically the radial distances and the circumference
grow both according to the same exponential law, the squeezing is “conformal”, i.e., (suf-
ficiently small) shapes painted onto H2 are not deformed, only their size shrinks with in-
creasing distance from the origin. By translating the original H2, the fish-eye-fovea can be
moved to any other part of H2, allowing to selectively zoom-in on interesting portions of a
map painted on H2 while still keeping a coarser view of its surrounding context.

2.2 Tesselations of the Hyperbolic Plane

To complete the set-up for a hyperbolic SOM we still need an equivalent of a regular grid in
the hyperbolic plane. For the hyperbolic plane there exist an infinite number of tesselations
with congruent polygons such that each grid point is surrounded by the same number � of
neighbors [9, 10]. Fig. 2 shows two example tesselations (for the minimal value of � ���
and for � �)= I

), using the Poincaré model for their visualization. While these tesselations
appear non-uniform, this is only due to the fish-eye effect of the Poincaré projection. In the
original H2, each tesselation triangle has the same size.

One way to generate these tesselations algorithmically is by repeated application of a suit-
able set of generators of their symmetry group to a (suitably sized, cf. below) “starting
triangle”, for more details cf. [11].

Figure 2: Regular triangle tesselations of the hyperbolic plane, projected into the unit disk using
the Poincar é mapping. The left tesselation shows the case where the minimal number ( ����� )
of equilateral triangles meet at each vertex, the right figure was constructed with ���
	�� . In the
Poincar é projection, only sides passing through the origin appear straight, all other sides appear as
circular arcs, although in the original space all triangles are congruent.

3 Hyperbolic SOM Algorithm

We have now all ingredients required for a “hyperbolic SOM”. We organize the nodes of
a lattice as described above in “rings” around an origin node. The numbers of nodes of
such a lattice grows very rapidly (asymptotically exponentially) with the chosen lattice
radius C (its number of rings). For instance, a lattice with � �
� � C ���

contains 1625
nodes. Each lattice node � carries a prototype vector ������ B C � from some K -dimensional
feature space (if we wish to make any non-standard assumptions about the metric structure
of this space, we would build this into the distance metric that is used for determining the
best-match node). The SOM is then formed in the usual way, e.g., in on-line mode by



repeatedly determining the winner node � and adjusting all nodes � ��� � � ����� in a radial
lattice neighborhood � � � ����� around � according to the familiar rule� �� � ���
	 ��� � �#+* �� � � (4)

with
	 ��� ��
��
�:��* " � �

� � � � ����� � � . However, since we now work on a hyperbolic lattice, we
have to determine both the neighborhood � � � ����� and the (squared) node distance " � �

� � � �
according to the natural metric that is inherited by the hyperbolic lattice.

The simplest way to do this is to keep with each node � a complex number � � to identify its
position in the Poincaré model. The node distance is then given (using the Poincaré model,
see e.g. [7]) as

" � � arctanh

������ � � * � �= *��� ��� � � ���� � � (5)

The neighborhood � � � � � � can be defined as the subset of nodes within a certain graph
distance (which is chosen as a small multiple of the neighborhood radius � ) around � .
4 Experiments

Some introductory experiments where several examples illustrate the favorable properties
of the HSOM as compared to the “standard” euclidean SOM can be found in [11, 12]. A
major example of the use of the SOM for text mining is the WEBSOM project [2].

4.1 Text Categorization

In order to apply the HSOM to natural text categorization, i.e. the assignment of natu-
ral language documents to a number of predefined categories, we follow the widely used
vector-space-model of Information Retrieval (IR). For each document " we construct a fea-
ture vector �� � " � , where the components

���
are determined by the frequency of which term� � occurs in that document. Following standard practice [13] we choose a term frequency� inverse document frequency weighting scheme:��� � � � � � � �! �#"%$'& � �

" � � � � � � � (6)

where the term frequency � � � � � �! � denotes the number of times term � � occurs in ")( , � the
number of documents in the training set and " � � � � � the document frequency of � � , i.e. the
number of documents � � occurs in.

The HSOM can be utilized for text categorization in the following manner. In a first step,
the training set is used to adapt the weight vectors �� � according to (4). During the second
step, the training set is mapped onto the HSOM lattice. To this end, for each training
example " ( its best match node � is determined such that��� �� � " ( � * �� � ���+* ��� �� � " ( � * �� �

���-, � � (7)

where �� � ")( � denotes the feature vector of document "�( , as described above. After all
examples have been presented to the net, each node is labelled with the union . � of all
categories that belonged to the documents that were mapped to this node. A new, unknown
text is then classified into the union . � of categories which are associated with its winner
node � selected in the HSOM.

Text Collection. We used the Reuters-215781 data set since it provides a well known
baseline which is also used by other authors to evaluate their approaches, c.f. [14, 15]. We

1As compiled by David Lewis from the AT&T Research Lab in 1987. The data can be found at
http://www.research.att.com/ / lewis/



have used the “ModApte” split, leading to 9603 training and 3299 test documents. After
preprocessing, our training set contained 5561 distinct terms.

Performance Evaluation. The classification effectiveness is commonly measured in terms
of precision � and recall C [16], which can be estimated as � � � �������� ���	� � � � C � �

�
����
� �����	
�� � where ��� � and � � � are the numbers of documents correctly classified, and
correctly not classified to category � � , respectively. Analogous, ��� � and � � � are the
corresponding numbers of falsely classified documents.

For each node � and each category � � a confidence value � � � is determined. It describes the
number of training documents belonging to class � � which were mapped to node � . When
retrieving documents from a given category � � , we compare for each node � its associated
� � � against a threshold � . Documents from nodes with � � ��� � become then included
into the retrieval set. For nodes � which contain a set of documents K �

��� , the order of the
retrieval set is ranked by � $ � � �� � " ( � � �� � � , where �� � " ( � � K �

��� .
In this way the number of retrieved documents can be controlled and we obtain the
precision-recall-diagrams as shown in Fig. 3.

In order to compare the HSOM’s performance for text categorization, we also evaluated a�
-nearest neighbor (

�
-NN) classifier with our training set. Apart from boosting methods

[16] only support vector machines [14] have shown better performances. The confidence
level of a

�
-NN classifier to assign document "�( to class � � is

��� -NN� � " ( � � �
����� 
��! �#"%$'&

�)( � � $ � � " ( � " ( ��� (8)

where � � � " ( � is the set of
�

documents " ( for which � $ � � " ( � " ( � is maximum. The assign-
ment factor &

�)(
is 1, if " ( belongs to category � � and 0 otherwise. According to [14, 17] we

have chosen the
� �+*�I

nearest neighbors.

Text Categorization Results. The results of three experiments are shown in Table 1. We
have compared a HSOM with C �)�

rings and a tesselation with � �-,
neighbors (sum-

ming up to 1306 nodes) to a spherical standard euclidean SOM as described in [11] with
approx. 1300 nodes, and the

�
-NN classifier. Our results indicate that the HSOM does not

perform better than a
�

-NN classifier, but to a certain extent also does not play significantly
worse either. It is noticable that for less dominant categories the HSOM yields superior
results to those of the standard SOM. This is due to the fact, that the nodes in H2 cover
a much broader space and therefore offer more freedom to map smaller portions of the
original dataspace with less distortions as compared to euclidean space.

As the
�

-NN results suggest, other state-of-the-art techniques like support vector machines
will probably lead to better numerical categorization results than the HSOM. However,
since the main purpose of the HSOM is the visualization of relationships between texts
and text categories, we believe that the observed categorization performance of the HSOM
compares sufficiently well with the more specialized (non-visualization) techniques to war-
rant its efficient use for creating insightful maps of large bodies of document data.

Table 1: Precision-recall breakeven points for the ten most prominent categories.

earn acq mny-fx crude grain trade interest wheat ship corn
SOM 90.0 81.2 61.7 70.3 69.4 48.8 57.1 61.9 54.8 50.3

HSOM 90.2 81.6 68.7 78.8 76.2 56.8 66.4 69.3 61.8 53.6.
-NN 93.8 83.7 69.3 84.7 81.9 61.9 71.0 69.0 77.5 67.9
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Figure 3: Precision-recall curves for the three most frequent categories earn, acq and money-fx.

4.2 Text Mining & Semantic Navigation

A major advantage of the HSOM is its remarkable capability to map high-dimensional
similarity relationships to a low-dimensional space which can be more easily handled and
interpreted by the human observer. This feature and the particular “fish-eye” capability mo-
tivates our approach to visualize whole text collections with the HSOM. It can be regarded
as an interface capturing the semantic structure of a text database and provides a way to
guide the users attention. In preliminary experiments we have labelled the nodes with
glyphs corresponding to the categories of the documents mapped to that node. In Fig. 4
two HSOM views of the Reuters data set are shown. Note, that the major amount of data
gets mapped to the outermost region, where the nodes of the HSOM make use of the large
space offered by the hyperbolic geometry. During the unsupervised training process, the
document’s categories were not presented to the HSOM. Nevertheless, several document
clusters can be clearly identified. The two most prominent are the earn and acquisition
region of the map, reflecting the large proportion of these categories in the Reuters-21578
collection. Note, that categories which are semantically similar are located beside each
other, as can be seen in the corn, wheat, grain the interest, money-fx or the crude, ship area
of the map. Additional to the category (glyph type) and the number of training documents
per node (glyph size), the number of test documents mapped to each node is shown as the
height of the symbol above the ground plane. In this way the HSOM can be used as a
novelty detector in chronological document streams. For the Reuters-21578 dataset, a par-
ticular node strikes out. It corresponds to the small glyph tagged with the “ship” label in
Fig. 4. Only a few documents from the training collection are mapped to that node as shown
by it’s relatively small glyph size. The large � -value on the other hand indicates that it con-
tains a large number of test documents, and is therefore probably semantically connected
to a significant, novel event only contained in the test collection. The right image of Fig. 4
shows the same map, but the focal view now moved into the direction of the conspicious
“ship” node, resulting in a magnification of the corresponding area. A closer inspection re-
veals, that the vast majority (35 of 40) of the test documents describe an incident where an
Iranian oil rig was attacked in the gulf. Although no document of the training set describes
this incident (because the text collection is ordered by time and the attack took place “after”
the split into train and test set), the HSOM generalizes well and maps the semantic content
of these documents to the proper area of the map, located between the regions for crude
and ship.

The next example illustrates that the HSOM can provide more information about an un-
known text than just it’s category. For this experiment we have taken movie reviews from
the rec.art.movies.reviews newsgroup. Since all the reviews describe a certain movie, we
retrieved their associated genres from the Internet Movie Database (http://www.imdb.com)
to build a set of category labels for each document. The training set contained 8923 ran-
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Figure 4: The left figure shows a central view of the Reuters data. We used a HSOM with � ���
rings and a tesselation with � ��� neighbors. Ten different glyphs were used to visualize the ten most
frequent categories. They were manually tagged to indicate the correspondence between category
and symbol type. The glyph sizes and the � -values (height above ground plane) reflect the number of
training and test documents mapped to the corresponding node, respectively.

domly selected reviews (without their genre information) from films released before 2000.
We then presented the system with five reviews from the film “Atlantis”, a Disney cartoon
released in 2001. The HSOM correctly classified all of the five texts as reviews for an an-
imation movie. In Fig. 5 the projection of the five new documents onto the map with the
previously acquired text collection is shown. It can be seen that there exist several clusters
related to the animation genre. By moving the fovea of the HSOM we can now “zoom”
into that region which contains the five new texts. In the right of Fig. 5 it can be seen
that all of the “Atlantis” reviews where mapped to a node in immediate vicinity of docu-
ments describing other Disney animation movies. This example motivates the approach of
“semantic navigation” to rapidly visualize the linkage between unknown documents and
previously acquired semantic concepts.
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Figure 5: A HSOM with � ��� and a tesselation with � � � neighbors was used to map movie
rewies from newsgroup channels. In both figures, glyph size and � -value indicate the number of
texts related to the animation genre mapped to the corresponding node. Nodes exceeding a certain
threshold were labelled with the title corresponding to the most frequently occuring movie mapped
to that node. The underlined label in the right figure indicates the position of the node to which five
new documents were mapped to.

5 Conclusion

Efficient navigation in “Sematic Space” requires to address two challenges: (i) how to cre-
ate a low dimensional display of semantic relationship of documents, and (ii) how to obtain
these relationships by automated text categorization. Our results show that the HSOM can
provide a good solution to both demands simultaneously and within a single framework.



The HSOM is able to exploit the peculiar geometric properties of hyperbolic space to suc-
cessfully compress complex semantic relationships between text documents. Additionally,
the use of hyperbolic lattice topology for the arrangement of the HSOM nodes offers new
and attractive features for interactive “semantic navigation”. Large document databases
can be inspected at a glance while the HSOM provides additional information which was
captured during a previous training step, allowing e.g. to rapidly visualize relationships
between new documents and previously acquired collections.

Future work will address more sophisticated visualization strategies based on the new ap-
proach, as well as the exploration of other text representations which might take advantage
of hyperbolic space properties.
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