Probabilistic Abstraction Hierarchies

Eran Segal Daphne Kaoller Dirk Ormoneit
Computer Science Dept. Computer Science Dept. Computer Science Dept.
Stanford University Stanford University Stanford University
eran@cs.stanford.edu koller@cs.stanford.edu ormoneit@cs.stanford.edu
Abstract

Many domains are naturally organized in an abstraction hierarchy or taxonomy,
where the instances in “nearby” classes in the taxonomy are similar. In this pa-
per, we provide a general probabilistic framework for clustering data into a set
of classes organized as a taxonomy, where each class is associated with a prob-
abilistic model from which the data was generated. The clustering algorithm
simultaneously optimizes three things: the assignment of data instances to clus-
ters, the models associated with the clusters, and the structure of the abstraction
hierarchy. A unique feature of our approach is that it utilizes global optimization
algorithms for both of the last two steps, reducing the sensitivity to noise and the
propensity to local maxima that are characteristic of algorithms such as hierarchi-
cal agglomerative clustering that only take local steps. We provide a theoretical
analysis for our algorithm, showing that it converges to a local maximum of the
joint likelihood of model and data. We present experimental results on synthetic
data, and on real data in the domains of gene expression and text.

1 Introduction

Many domains are naturally associated with a hierarchical taxonomy, in the form of a tree,
where instances that are close to each other in the tree are assumed to be more “similar” than
instances that are further away. In biological systems, for example, creating a taxonomy of
the instances is often one of the first steps in understanding the system. In particular, much
of the work on analyzing gene expression data [3] has focused on creating gene hierarchies.
Similarly, in text domains, creating a hierarchy of documents is a common task [12, 7].

In many of these applications, the hierarchy is unknown; indeed, discovering the hier-
archy is often a key part of the analysis. The standard algorithms applied to the problem
typically use an agglomerative bottom-up approach [3] or a divide-and-conquer top-down
approach [8]. Although these methods have been shown to be useful in practice, they suf-
fer from several limitations: First, they proceed via a series of local improvements, making
them particularly prone to local maxima. Second, at least the bottom-up approaches are
typically applied to the raw data; models (if any), are constructed as a post-processing
step. Thus, domain knowledge about the type of distribution from which data instances are
sampled is rarely used in the formation of the hierarchy.

In this paper, we present probabilistic abstraction hierarchies (PAH), a probabilisti-
cally principled general framework for learning abstraction hierarchies from data which
overcomes these difficulties. We use a Bayesian approach, where the different models
correspond to different abstraction hierarchies. The prior is designed to enforce our intu-
itions about taxonomies: nearby classes have similar data distributions. More specifically,
a model in a PAH is a tree, where each node in the tree is associated with a class-specific
probabilistic model (CPM). Data is generated only at the leaves of the tree, so that a model
basically defines a mixture distribution whose components are the CPMs at the leaves of

the tree. The CPMs at the internal nodes are used to define the prior over models: We
prefer models where the CPM at a child node is close to the CPM at its parent, relative to
some distance function between CPMs. Our framework allows a wide range of notions of
distance between models; we essentially require only that the distance function be convex
in the parameters of the two CPMs. For example, if a CPM is a Gaussian distribution, we
might use a simple squared Euclidean distance between the parameters of the two CPMs.

We present a novel algorithm for learning the model parameters and the tree structure
in this framework. Our algorithm is based on the structural EM (SEM) approach of [4],
but utilizes “global” optimization steps for learning the best possible hierarchy and CPM
parameters (see also [5, 13] for similar global optimization steps within SEM). Each step in
our procedure is guaranteed to increase the joint probability of model and data, and hence
(like SEM) our procedure is guaranteed to converge to a local optimum.

Our approach has several advantages. (1) It provides principled probabilistic semantics
for hierarchical models. (2) It is model based, which allows us to exploit domain structural
knowledge more easily. (3) It utilizes global optimization steps, which tend to avoid local
maxima and help make the model less sensitive to noise. (4) The abstraction hierarchy
tends to pull the parameters of one model closer to those of nearby ones, which naturally
leads to a form of parameter smoothing or shrinkage [12].

We present experiments for PAH on synthetic data and on two real data sets: gene
expression and text. Our results show that the PAH approach produces hierarchies that are
more robust to noise in the data, and that the learned hierarchies generalize better to test
data than those produced by hierarchical agglomerative clustering.

2 Probabilistic Abstraction Hierarchy

Let S be the domain of some random observation, e.g., the set of possible assignments
to a set of features. Our goal is to take a set of instances in S, and to cluster them into
some set of k classes. Standard “flat” clustering approaches — for example, Autoclass [1]
or the k-means algorithm — are special cases of a generative mixture model. In such
models, each data instance belongs to one of the & classes, each of which is associated
with a different class-specific probabilistic model (CPM). Each data instance is sampled
independently by first selecting one of the & classes according to a multinomial distribution,
and then randomly selecting the data instance itself from the CPM of the chosen class.

In standard clustering models, there is no relation between the individual CPMs, which
can be arbitrarily different. In this paper, we propose a model where the different classes
are related to each other via an abstraction hierarchy, such that classes that are “nearby” in
the hierarchy have similar probabilistic models. More precisely, we define:

Definition 2.1 A probabilistic abstraction hierarchy (PAH) A is a tree T" with nodes V' =
{v1,... ,vm} and undirected edges E, such that T" has exactly k leaves vy, ... ,v;. Each
node v;, i« = 1,...,m, is associated with a CPM M;, which defines a distribution over
S; we use M to denote My,... , M,,. We also have a multinomial distribution over the
leaves vy, ... , vg; We use @ to denote the parameters of this distribution.

Our framework does not, in principle, place restrictions on the form of the CPMs; we
can use any probabilistic model that defines a probability distribution over S. For example,
M; may be a Bayesian network, in which case its specification would include the param-
eters, and perhaps also the network structure; in a different setting, M; may be a hidden
Markov model. In practice, however, the choice of CPMs has ramifications both for the
overall hierarchical model and the algorithm.

As discussed above, we assume that data is generated only from the leaves of the tree.
Thus, we augment .S with an additional hidden class variable C' for each data item, which
takes the values 1,... , k denoting the leaf that was chosen to generate this item. Given
a PAH A, an element s € S, and a value ¢ for C, we define P(s,c | A) = P(C = ¢ |
0)P(s | M,.), where P(C = ¢ |) is the multinomial distribution over the leaves and
P(s | M.) is the conditional density of the data item given the CPM at leaf c¢. The induced

() (M) (W (M5
wy () (wy
by Q) Vel
y (M) MM

(M) W (=MD
() (w)
@) (b)

Figure 1: (a) A PAH with 3 leaves over a 4-dimensional continuous state space, along
with a visualization of the Gaussian distribution for the 3rd dimension. (b) Two different
weight-preserving transformations for a tree with 4 leaves M1, ... , My.

distribution of s given A, from which the data are generated, is simply P(s | .A), where ¢
is summed out from P(s,c | A).

As we mentioned, the role of the internal nodes in the tree is to enforce an intuitive
interpretation of the model as an abstraction hierarchy, by enforcing similarity between
CPMs at nearby leaves. We achieve this goal by defining a prior distribution over ab-
straction hierarchies 4 that penalizes the distance between neighboring CPMs M and M’
using a distance function p(M, M'). Note that we do not require that p be a distance in
the mathematical sense; instead, we only require that it be symmetric (as we chose to use
undirected trees), non-negative, and that p(M, M') = 0 iff M = M'.* One obvious choice
is to define p(M, M') = Dy (M;M') 4+ Dx (M'; M), where Dy (M; M') is the KL-
distance between the distributions that A/ and M’ define over S. This distance measure
has the advantage of being applicable to any pair of CPMs over the same space, even if
their parameterization is different. Given a definition of p, we define the prior over PAHs
as P(A) o« [[; jyer exp (=Ap(M;, Mj)), where X represents the extent to which differ-

ences in distances are penalized (larger A represents a larger penalty).?

Given a set of data instances D with domain S, our goal is to find a PAH A that max-
imizes P(A | D) « P(A)P(D | A) or equivalently, log P(A) + log P(D | A). By
maximizing this expression, we are trading off the fit of the mixture model over the leaves
to the data D, and the desire to generate a hierarchy in which nearby models are similar.
Fig. 1(a) illustrates a typical PAH with Gaussian CPM distributions, where a CPM close
to the leaves of the tree is more specialized and thus has fairly peaked distributions. Con-
versely, CPMs closer to the root of the tree, acting to bridge between their neighbors, are
expected to have less peaked distributions and peak only around parts of the distribution
which are common to an entire subtree.

3 LearningtheModels

Our goal in this section is to learn a PAH A from a data set D = {d[1],... ,d[N]}. This
learning task is fairly complex, as many aspects are unknown: the structure of the tree T,
the CPMs My, ... , M, at the nodes of 7', the parameters @, and the assignment of the
instances in D to leaves of T'. Hence, the likelihood function has multiple local maxima,
and no general method exists for finding the global maximum. In this section, we provide
an efficient algorithm for finding a locally optimal A.

Two models are considered identical if Vs € S : P(s | M) = P(s | M').

2Care must be taken to ensure that P(.A) is a proper probability distribution, but this will always
be the case for the choice of p we use in this paper. We also note that, if desired, we can modify this
prior to incorporate a prior over the parameters of the M;’s.

To simplify the algorithm, we assume that the structure of the CPMs My, ..., M,, is
fixed. This reduces the choice of each M; to a pure numerical optimization problem. The
general framework of our algorithm extends to cases where we also have to solve the model
selection problem for each M;, but the computational issues are somewhat different.

We first discuss the case of complete data, where for each data instance d[j] € D, we
are given the leaf from which it was generated. For this case, we show how to learn the
structure of the tree 7" and the setting of the parameters @ and M. This problem, of con-
structing a tree over a set of points that is not fixed, is very closely related to the Steiner
tree problem [10], virtually all of whose variants are NP-hard. We propose a heuristic ap-
proach that decouples the joint optimization problem into two subproblems: optimizing the
CPM parameters given the tree structure, and learning a tree structure given a set of CPMs.
Somewhat surprisingly, we show that our careful choice of additive prior allows each of
these subproblems to be tackled very effectively using global optimization techniques.

We begin with the task of learning the CPMs. Thus, assume that we are given both the
structure of the tree 7" and the assignment of each data instance d[m] € D to one of the
k leaves, denoted C[m]. It remains to find 0.,in, M s that minimize J = —log P(D |
A) —log P(A). Substituting the definitions into .J, we get that

|D|
=Y 10gP(Cm] [0) =D > log P(d[m] | Mi)+ > Ap(Mi, Mj). (1)
m=1 i m:C[m]=i (i,j)EE

The first term, involving the multinomial parameters @, separates from the rest, so that
the optimization of J relative to @ reduces to straightforward maximum likelihood estima-
tion. To optimize the CPM parameters, the key property turns out to be the convexity of
the J function, which holds in a wide variety of choices of CPMs and p; in particular, it
holds for the models used in our experiments. The convexity property allows us to find the
global minimum of J using a simple iterative procedure. In each iteration, we optimize the
parameters of one of the A;’s, fixing the parameters of the remaining CPMs M (j # 1).
This procedure is repeated for each of the A/;’s in a round robin fashion, until convergence.
By the joint convexity of J, this iterative procedure is guaranteed to converge to the global
minimum of J. An examination of (1) shows that the optimization of each CPM M; in-
volves only the data cases assigned to M; (if 4 is a leaf) and the parameters of the CPMs
M; that are neighbors of M; in the tree, thereby simplifying the computation substantially.

We now turn our attention to the second subproblem, of learning the structure of the
tree given the learned CPMs. We first consider an empty tree containing only the (uncon-
nected) leaf nodes vy, . . . , vg, and find the optimal parameter settings for each leaf CPM as
described above. Note that these CPMs are unrelated, and the parameters of each one are
computed independently of other CPMs. Given this initial set of CPMs for the leaf nodes
v1,... Vg, the algorithm tries to learn a good tree structure 7' relative to these CPMs.
The goal is to find the lowest weight tree, subject to the restriction that the tree structure
must keep the same set of leaves vy, . .. , ;. Due to the decomposability of log P(A), the
penalty of the tree can be measured via the sum of the edge weights p(M;, M;). This prob-
lem is also a variant of the Steiner tree problem. As a heuristic substitute, we follow the
lines of [5] and use a minimum spanning tree (MST) algorithm for constructing low-weight
trees.

At each iteration, the algorithm starts out with a tree over some set of nodes vy, . .. , vm,.
It takes the leaves vy, ... , vy Of this tree, and constructs an MST over them. Of course,
in the resulting tree, some of the M; are no longer leaves. This problem is corrected by a
transformation that “pushes” a leaf down the tree, duplicating its model; this transformation
preserves the weight (score) of the tree. By using only vy, ... ,vg, the algorithm simply
“throws away” the entire structure of the previous tree. However, we can also construct
new MSTs built from all nodes vy, ... , v, of the previous tree. For all nodes v; for 1 <
i < k which end up as internal nodes, we perform the same transformation described
above. In both cases, this transformation is not unique, as it depends on the order in which
the steps are executed; see Fig. 1(b). The algorithm therefore generates an entire pool of

candidate trees (from both vy, ... ,v; and vy, ... ,v,,), generated using different random
resolutions of ambiguities in the weight-preserving transformation. For each such tree, the
CPM learning algorithm is used to find an optimal setting of the parameters. The trees are
evaluated relative to our score (log P(A | D)), and the highest scoring tree is kept.

The tree just constructed has a new set of CPMs, so we can repeat this process. To
detect termination, the algorithm also keeps the tree from the previous iteration, and termi-
nates when the score of all trees in the newly constructed pool is lower than the score of
the best tree from previous iteration.

Finally, we address the fact that the data we have is incomplete, in that the assign-
ments C[m] of data instances to classes is not determined. We address the problem of
incomplete data using the standard Expectation Maximization (EM) algorithm [2] and the
structural EM algorithm [4] which extends EM to the problem of model selection. Starting
from an initial model, the algorithm iterates the following two steps: The E-step com-
putes the distribution over the unobserved variables given the observed data and the current
model. In our case, the distribution over the unobserved variables is computed by evalu-
ating P(C[m] =i | d[m], A) forall 1 < m < |D|. The M-step learns new models that
increase the expected log likelihood of the data, relative to the distribution computed in
the E-step. In our case, the M-step is precisely the algorithm for complete data described
above, but using a soft assignment of data instances to nodes in the tree. The full algorithm
is shown in Fig. 2.

A simple analysis along the lines of [4] can be used to show that the log-probability
log P(A | D) increases at every M-step. We therefore obtain the following theorem:

Theorem 3.1 The algorithm in Fig. 2 converges to a local maximum of log P(A | D).

1. Initialize A = ({My, ..., My}, 0) and the models at the leaves. Randomly initialize 6.
2. Repeat until convergence:

(d) T-step:
i. Choose an MST over some subset of {v1, . .., vm }, using p(M;, M;) as edge weights.
ii. Transform the MST so that vy, ... , vx become leaves.

(b) E-step: For j = 1,..., N, compute the posterior probabilities for the indicator variable
Clj]. For1 <i< k:

q(Clj]l =) :== P(Clj] =i | D, A) o P(d[j] | M:)b;.
(c) M-step: Update the CPMs and 8. Let (D, C) = {d[j], C[5]};=1. Then:
b = %;qwm i)

M := argmaxE;[log P((D,C),M |T)].

Figure 2: Abstraction Hierarchy Learning Algorithm

4 Experimental Results

We focus our experimental results on genomic expression data, although we also provide
some results on a text dataset. In gene expression data, the level of mMRNA transcript of
every gene in the cell is measured simultaneously, using DNA microarray technology. This
genomic expression data provides researchers with much insight towards understanding
the overall cellular behavior. The most commonly used method for analyzing this data is
clustering, a process which identifies clusters of genes that share similar expression pat-
terns (e.g., [3]), and which are therefore also often involved in similar cellular processes.
We apply PAH to this data, using CPMs of the form M; = N(ji‘;o%I), in which case

KL-distance is simply: Dy, (M;; M) = X S0, (ué —)2, which is simply the sum of

squared distances between the means of the corresponding Gaussian components, normal-
ized by their variance. We therefore define p(M;, M;) = Dk (M;; M;).

The most popular clustering method for genomic expression data to date is hierarchical
agglomerative clustering (HAC) [3], which builds a hierarchy among the genes by itera-
tively merging the closest genes relative to some distance metric. We use the same distance
metric for HAC. (Note that in HAC the metric is used as the distance between data cases
whereas in our algorithm it is used as the distance between models.) To perform a direct
comparison between PAH and HAC, we often need to obtain a probabilistic model from
HAC. To do so, we create CPMs from the genes that HAC assigned to each internal node.
In both PAH and HAC, we then assign each gene (in the training set or the test set) to
the hierarchy by choosing the best (highest likelihood) CPM among all the nodes in the
tree (including internal nodes) and recording the probability P(g | Mp.s:) that this CPM
assigns to the gene.

Structure Recovery. A good algorithm for learning abstraction hierarchies should recover
the true hierarchy as well as possible. To test this, we generated a synthetic data set, and
measured the ability of each method to recover the distances between pairs of instances
(genes) in the generating model, where distance here is the length of the path between two
genes in the hierarchy.

We generated the data set by sampling from the leaves of a PAH; to make the data re-
alistic, we sampled from a PAH that we learned from a real gene expression data set. To
allow a comparison with HAC, we generated one data instance from each leaf. \We gener-
ated data for 80 (imaginary) genes and 100 experiments, for a total of 8000 measurements.
For robustness, we generated 5 different such data sets and ran PAH and HAC for each data
set.

We used the correlation and the Ly error between the pairwise distances in the original
and the learned tree as measures of similiarity. The correlation was 0.72 + 0.08 for PAH,
compared to a much worse 0.27 £+ 0.09 for HAC. The average L, error was 4.78 + 1.29
for PAH and 12.46 + 1.09 for HAC. These results show that PAH recovers an abstraction
hierarchy much better than HAC.

Generalization. We next tested the ability of the different methods to generalize to un-
observed (test) data, measuring the extent to which each method captures the underlying
structure in the data. We ran these tests on the yeast data set of [6]. We selected 953 genes
with significant changes in expression, using their full set of 93 experiments.

Again, we ran PAH and HAC and evaluated performance using 5 fold cross validation.
For PAH we also used different settings for A (the coefficient of the penalty term in P(A)),
which explores the performance in the range of only fitting the data (A = 0) and greatly
favoring hierarchies in which nearby models are similar (large A). In both cases, we learned
a model using training data, and evaluated the log-likelihood of test instances as described
above. The results, summarized in Fig. 3(a), clearly show that PAH generalizes much better
to previously unobserved data than HAC and that PAH works best at some tradeoff between
fitting the data and generating a hierarchy in which nearby models are similar.

Robustness. Our goal in constructing a hierarchy is to extract meaningful biological con-
clusions from the data. However, data is invariably partial and noisy. If our analysis pro-
duces very different results for slightly different training data, the biological conclusions
are unlikely to be meaningful. Thus, we want genes that are assigned to nearby nodes in
the tree, to be close together also in hierarchies learned from perturbed data sets.

We tested robustness to noise by learning a model from the original data set and from
perturbed data sets in which we permuted a varying percentage of the expression measu-
ments. We then compared the distances (the path length in the tree) between the nodes
assigned to every pair of genes in trees learned from the original data and trees learned
from perturbed data sets. The results are shown in Fig. 3(b), demonstrating that PAH pre-
serves the pairwise distances extremely well even when 20% of the data is perturbed (and
performs reasonably well for 30 — 40% permutation), while HAC completely deteriorates
when 20% of the data is permuted.

90 1
——PAH
0.9
-92
0.8
2. 5 o7
s g —— PAH
g gos —— HAC
5’ L.:, 0.5
© 08 2
g s
5-100 § 0.3
0.2
102
0.1
-104 N 0+ : T + A—d—st
0 2 4 6 8 10 12 14 16 18 20 0 20 40 6 80 100
Lambda Data permuted (%)
(a) (b)
Figure 3: (a) Generalization to test data (b) Robustness to noise

methodolog

feedforward N

vector | |boltzmann nonLinear| carlo
gradient machin - mcmc

Training set Test set
Model p avg. L1 difference avg. L1 difference markoy
PAH 90% 2.57 £1.57 2.61 £1.68
HAC 7.43 £4.78 11.34 £ 7.2
PAH 80% 2.95 +1.81 2.76 £1.61
HAC 9.44 +5.68 20.87 £ 10.68 ‘
PAH 70% 3.11+1.84 317 £ 1.8
HAC 9.79+ 5.4 21.72 +£13.8
(@) (b)

Figure 4: (a) Robustness of PAH and HAC to different subsets of training instances. (b)
Word hierarchy learned on Cora data.

A second important test is robustness to our particular choice of training data: a par-
ticular training set reflects only a subset of the experiments that we could have performed.
In this experiment, we used the Yeast Compendium data of [9], which measures the ex-
pression profiles triggered by specific gene mutations. We selected 450 genes and all 298
arrays, focusing on genes that changed significantly. For each of three values of p ranging
from 70% to 90%, we generated ten different training sets by sampling (without replace-
ment) p percent of the 450 genes, the rest of which form a test set.

We then placed both training and test genes within the hierarchy. For each data set, every
pair of genes either appear together in the training set, the test set, or do not appear together
(i.e., one appears in the training set and the other in the test set). We compared, for each pair
of genes, their distances in training sets in which they appear together and their distances
in test sets in which they appear together. The results are summarized in Fig. 4(a). Our
results on the training data show that PAH consistently constructs very similar hierarchies,
even from very different subsets of the data. By contrast, the hierarchies constructed by
HAC are much less consistent. The results on the test data are even more striking. PAH
is very consistent about its classification into the hierachy even of test instances — ones
not used to construct the hierarchy. In fact, there is no significant difference between its
performance on the training data and the test data. By contrast, HAC places test instances
in very different configurations in different trees, reducing our confidence in the biological
validity of the learned structure.

Intuitiveness. To get qualitative insight into the hierarchies produced, we ran
PAH on 350 documents from the Probabilistic Methods category in the Cora dataset
(cor a. whi zbang. com and learned hierarchies among the (stemmed) words. We con-
structed a vector for each word with an entry for each document whose value is the TFIDF-

weighted frequency of the word within the document. Fig. 4(b) shows parts of the learned
hierarchy, consisting of 441 nodes, where we list high confidence words for each node.
PAH organized related words into the same region of the tree. Within each region, many
words were arranged in a way which is consistent with our intuitive notion of abstraction.

5 Discussion

We presented probabilistic abstraction hierarchies, a general framework for learning ab-
straction hierarchies from data, which relates different classes in the hierarchy by a
tree whose nodes correspond to class-specific probability models (CPMs). We utilize a
Bayesian approach, where the prior favors hierarchies in which nearby classes have similar
data distributions, by penalizing the distance between neighboring CPMs.

A unique feature of PAH is the use of global optimization steps for constructing the
hierarchy and for finding the optimal setting of the entire set of parameters. This feature
differentiates us from many other approaches that build hierarchies by local improvements
of the objective function or approaches that optimize a fixed hierarchy [7]. The global op-
timization steps help in avoiding local maxima and in reducing sensitivity to noise. Our
approach leads naturally to a form of parameter smoothing, and provides much better gen-
eralization for test data and robustness to noise than other clustering approaches.

In principle, we can use any probabilistic model for the CPM as long as it defines a
probability distribution over the state space. We have recently [14] applied this approach
to the substantially more complex problem of clustering proteins based on their amino acid
sequence using profile HMMs [11].

Acknowledgements. We thank Nir Friedman for useful comments. This work was sup-

ported by NSF Grant ACI-0082554 under the NSF ITR program, and by the Sloan Foun-
dation. Eran Segal was also supported by a Stanford Graduate Fellowship (SGF).

References

[1] P. Cheeseman and J. Stutz. Bayesian Classifi cation (AutoClass): Theory and Results. AAAI
Press, 1995.

[2] A.P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via
the EM algorithm. Journal of the Royal Satistical Society, B 39:1-39, 1977.

[3] M. Eisen, P. Spellman, P. Brown, and D. Botstein. Cluster analysis and display of genome-wide
expression patterns. PNAS 95:14863-68, 1998.

[4] N. Friedman. The Bayesian structural EM algorithm. In Proc. UAI, 1998.

[5] N. Friedman, M. Ninio, I. Pe’er, and T. Pupko. A structural EM algorithm for phylogentic
inference. In Proc. RECOMB, 2001.

[6] A.P. Gasch et al. Genomic expression program in the response of yeast cells to environmental
changes. Mal. Bio. Cell, 11:4241-4257, 2000.

[7] T. Hofmann. The cluster-abstraction model: Unsupervised learning of topic hierarchies from
text data. In Proc. 1JCAI, 1999.

[8] T. Hofmann. The cluster-abstraction model: Unsupervised learning of topic hierarchies from
text data. In Proc. International Joint Conference on Artifi cial Intelligence, 1999.
[9] T. R. Hughes et al. Functional discovery via a compendium of expression profiles. Cell,
102(1):109-26, 2000.
[10] FK. Hwang, D.S.Richards, and P. Winter. The Seiner Tree Problem. Annals of Discrete
Mathematics, Vol. 53, North-Holland, 1992.

[11] A. Krogh, M. Brown, S. Mian, K. Sjolander, and D. Haussler. Hidden markov models in
computational biology: Applications to protein modeling. Mol. Biology, 235:1501-1531, 1994.

[12] A. McCallum, R. Rosenfeld, T. Mitchell, and A. Ng. Improving text classification by shrinkage
in a hierarchy of classes. In Proc. ICML, 1998.

[13] M. Meila and M.I. Jordan. Learning with mixtures of trees. Machine Learning, 1:1-48, 2000.

[14] E. Segal and D. Koller. Probabilistic hierarchical clustering for biological data. In RECOMB,
2002.

