
Computing Time Lower Bounds for 
Recurrent Sigmoidal Neural Networks 

Michael Schmitt 
Lehrstuhl Mathematik und Informatik, Fakultat fUr Mathematik 

Ruhr-Universitat Bochum, D- 44780 Bochum, Germany 
mschmitt@lmi.ruhr-uni-bochum.de 

Abstract 

Recurrent neural networks of analog units are computers for real­
valued functions. We study the time complexity of real computa­
tion in general recurrent neural networks. These have sigmoidal, 
linear, and product units of unlimited order as nodes and no re­
strictions on the weights. For networks operating in discrete time, 
we exhibit a family of functions with arbitrarily high complexity, 
and we derive almost tight bounds on the time required to compute 
these functions. Thus, evidence is given of the computational lim­
itations that time-bounded analog recurrent neural networks are 
subject to. 

1 Introduction 

Analog recurrent neural networks are known to have computational capabilities that 
exceed those of classical Turing machines (see, e.g., Siegelmann and Sontag, 1995; 
Kilian and Siegelmann, 1996; Siegelmann, 1999). Very little, however, is known 
about their limitations. Among the rare results in this direction, for instance, 
is the one of Sima and Orponen (2001) showing that continuous-time Hopfield 
networks may require exponential time before converging to a stable state. This 
bound, however, is expressed in terms of the size of the network and, hence, does 
not apply to fixed-size networks with a given number of nodes. Other bounds 
on the computational power of analog recurrent networks have been established by 
Maass and Orponen (1998) and Maass and Sontag (1999). They show that discrete­
time recurrent neural networks recognize only a subset of the regular languages in 
the presence of noise. This model of computation in recurrent networks, however, 
receives its inputs as sequences. Therefore, computing time is not an issue since 
the network halts when the input sequence terminates. Analog recurrent neural 
networks, however, can also be run as "real" computers that get as input a vector 
of real numbers and, after computing for a while, yield a real output value. No 
results are available thus far regarding the time complexity of analog recurrent 
neural networks with given size. 

We investigate here the time complexity of discrete-time recurrent neural networks 
that compute functions over the reals. As network nodes we allow sigmoidal units, 
linear units, and product units- that is, monomials where the exponents are ad-



justable weights (Durbin and Rumelhart, 1989) . We study the complexity of real 
computation in the sense of Blum et aI. (1998). That means, we consider real num­
bers as entities that are represented exactly and processed without restricting their 
precision. Moreover , we do not assume that the information content of the network 
weights is bounded (as done, e.g., in the works of Balcazar et aI. , 1997; Gavalda and 
Siegelmann, 1999). With such a general type of network, the question arises which 
functions can be computed with a given number of nodes and a limited amount of 
time. In the following , we exhibit a family of real-valued functions ft, l 2: 1, in one 
variable that is computed by some fixed size network in time O(l). Our main result 
is, then, showing that every recurrent neural network computing the functions ft 
requires at least time nW/4). Thus, we obtain almost tight time bounds for real 
computation in recurrent neural networks. 

2 Analog Computation in Recurrent Neural Networks 

We study a very comprehensive type of discrete-time recurrent neural network that 
we call general recurrent neural network (see Figure 1). For every k, n E N there is 
a recurrent neural architecture consisting of k computation nodes YI , . . . , Yk and n 
input nodes Xl , ... , x n . The size of a network is defined to be the number ofits com­
putation nodes. The computation nodes form a fully connected recurrent network. 
Every computation node also receives connections from every input node. The input 
nodes play the role of the input variables of the system. All connections are param­
eterized by real-valued adjustable weights. There are three types of computation 
nodes: product units, sigmoidal units, and linear units. Assume that computation 
node i has connections from computation nodes weighted by Wil, ... ,Wi k and from 
input nodes weighted by ViI, .. . ,Vi n. Let YI (t) , . . . ,Yk (t) and Xl (t), ... ,Xn (t) be the 
values of the computation nodes and input nodes at time t, respectively. If node i 
is a product unit, it computes at time t + 1 the value 

(1) 

that is, after weighting them exponentially, the incoming values are multiplied. 
Sigmoidal and linear units have an additional parameter associated with them, the 
threshold or bias ()i . A sigmoidal unit computes the value 

where (J is the standard sigmoid (J( z ) = 1/ (1 + e- Z ). If node i is a linear unit, it 
simply outputs the weighted sum 

We allow the networks to be heterogeneous, that is, they may contain all three types 
of computation nodes simultaneously. Thus, this model encompasses a wide class of 
network types considered in research and applications. For instance, architectures 
have been proposed that include a second layer of linear computation nodes which 
have no recurrent connections to computation nodes but serve as output nodes (see, 
e.g. , Koiran and Sontag, 1998; Haykin, 1999; Siegelmann, 1999). It is clear that in 
the definition given here, the linear units can function as these output nodes if the 
weights of the outgoing connections are set to O. Also very common is the use 
of sigmoidal units with higher-order as computation nodes in recurrent networks 
(see, e.g., Omlin and Giles , 1996; Gavalda and Siegelmann, 1999; Carrasco et aI., 
2000). Obviously, the model here includes these higher-order networks as a special 
case since the computation of a higher-order sigmoidal unit can be simulated by 
first computing the higher-order terms using product units and then passing their 
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Figure 1: A general recurrent neural network of size k. Any computation node may 
serve as output node. 

outputs to a sigmoidal unit . Product units , however, are even more powerful than 
higher-order terms since they allow to perform division operations using negative 
weights. Moreover, if a negative input value is weighted by a non-integer weight , 
the output of a product unit may be a complex number. We shall ensure here that 
all computations are real-valued. Since we are mainly interested in lower bounds, 
however, these bounds obviously remain valid if the computations of the networks 
are extended to the complex domain. 

We now define what it means that a recurrent neural network N computes a function 
f : ~n --+ llt Assume that N has n input nodes and let x E ~n. Given tE N, 
we say that N computes f(x) in t steps if after initializing at time 0 the input 
nodes with x and the computation nodes with some fixed values, and performing t 
computation steps as defined in Equations (1) , (2) , and (3) , one of the computation 
nodes yields the value f(x). We assume that the input nodes remain unchanged 
during the computation. We further say that N computes f in time t if for every 
x E ~n , network N computes f in at most t steps. Note that t may depend 
on f but must be independent of the input vector. We emphasize that this is 
a very general definition of analog computation in recurrent neural networks. In 
particular, we do not specify any definite output node but allow the output to occur 
at any node. Moreover, it is not even required that the network reaches a stable 
state, as with attractor or Hopfield networks. It is sufficient that the output value 
appears at some point of the trajectory the network performs. A similar view of 
computation in recurrent networks is captured in a model proposed by Maass et al. 
(2001). Clearly, the lower bounds remain valid for more restrictive definitions of 
analog computation that require output nodes or stable states. Moreover , they 
hold for architectures that have no input nodes but receive their inputs as initial 
values of the computation nodes. Thus, the bounds serve as lower bounds also for 
the transition times between real-valued states of discrete-time dynamical systems 
comprising the networks considered here. 

Our main tool of investigation is the Vapnik-Chervonenkis dimension of neural 
networks. It is defined as follows (see also Anthony and Bartlett, 1999): A dichotomy 
of a set S ~ ~n is a partition of S into two disjoint subsets (So , Sd satisfying 
So U S1 = S. A class :F of functions mapping ~n to {O, I} is said to shatter S if 
for every dichotomy (So , Sd of S there is some f E :F that satisfies f(So) ~ {O} 
and f(S1) ~ {I}. The Vapnik-Chervonenkis (VC) dimension of :F is defined as 
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Figure 2: A recurrent neural network computing the functions fl in time 2l + 1. 

the largest number m such that there is a set of m elements shattered by F. A 
neural network given in terms of an architecture represents a class of functions 
obtained by assigning real numbers to all its adjustable parameters, that is, weights 
and thresholds or a subset thereof. The output of the network is assumed to be 
thresholded at some fixed constant so that the output values are binary. The VC 
dimension of a neural network is then defined as the VC dimension of the class of 
functions computed by this network. 

In deriving lower bounds in the next section, we make use of the following result 
on networks with product and sigmoidal units that has been previously established 
(Schmitt, 2002). We emphasize that the only constraint on the parameters of the 
product units is that they yield real-valued, that is, not complex-valued, functions. 
This means further that the statement holds for networks of arbitrary order, that is, 
it does not impose any restrictions on the magnitude of the weights of the product 
units. 

Proposition 1. (Schmitt , 2002, Theorem 2) Suppose N is a feedforward neural 
network consisting of sigmoidal, product, and linear units. Let k be its size and W 
the number of adjustable weights. The VC dimension of N restricted to real-valued 
functions is at most 4(Wk)2 + 20Wk log(36Wk). 

3 Bounds on Computing Time 

We establish bounds on the time required by recurrent neural networks for comput­
ing a family of functions fl : JR -+ JR, l 2:: 1, where l can be considered as a measure 
of the complexity of fl. Specifically, fl is defined in terms of a dynamical system as 
the lth iterate of the logistic map ¢>(x) = 4x(1 - x), that is, 

fl(X) { 
¢>(x) 

¢>(fl - l (x)) 

l = 1, 

l > 2. 

We observe that there is a single recurrent network capable of computing every fl 
in time O(l). 

Lemma 2. There is a general recurrent neural network that computes fl in time 
2l + 1 for every l. 

Proof. The network is shown in Figure 2. It consists of linear and second-order 
units. All computation nodes are initialized with 0, except Yl, which starts with 1 
and outputs 0 during all following steps. The purpose of Yl is to let the input x 
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Figure 3: Network Nt. 

enter node Y2 at time 1 and keep it away at later times. Clearly, the value fl (x) 
results at node Y5 after 2l + 1 steps. D 

The network used for computing fl requires only linear and second-order units. The 
following result shows that the established upper bound is asymptotically almost 
tight, with a gap only of order four . Moreover, the lower bound holds for networks 
of unrestricted order and with sigmoidal units. 

Theorem 3. Every general recurrent neural network of size k requires at least time 
cl l / 4 j k to compute function fl' where c> 0 is some constant. 

Proof. The idea is to construct higher-order networks Nt of small size that have 
comparatively large VC dimension. Such a network will consist of linear and product 
units and hypothetical units that compute functions fJ for certain values of j. We 
shall derive a lower bound on the VC dimension of these networks. Assuming that 
the hypothetical units can be replaced by time-bounded general recurrent networks, 
we determine an upper bound on the VC dimension of the resulting networks in 
terms of size and computing time using an idea from Koiran and Sontag (1998) and 
Proposition 1. The comparison of the lower and upper VC dimension bounds will 
give an estimate of the time required for computing k 
Network Nt, shown in Figure 3, is a feedforward network composed of three networks 
• r(1) • r(2) .r(3) E h k • r(/1) 1 2 3 h l· d (/1) (/1) JVI , JVI , JVI . ac networ JVI ,J.L = , , , as lnput no es Xl' .. . , x I 

and 2l + 2 computation nodes yb/1), ... , Y~r~l (see Figure 4). There is only one 
adjustable parameter in Nt, denoted w, all other weights are fixed. The computation 
nodes are defined as follows (omitting time parameter t): 

for J.L = 3, 

for J.L = 1,2, 

y~/1) fll'--1 (Y~~)l) for i = 1, ... ,l and J.L = 1,2,3, 

y}~{ y~/1) . x~/1), for i = 1, .. . ,l and J.L = 1,2,3, 

(/1) (/1) (/1) c - 1 2 3 Y21+l YIH + ... + Y21 lor J.L - , , • 

The nodes Yb/1) can be considered as additional input nodes for N//1), where N;(3) 

gets this input from w, and N;(/1) from N;(/1+l) for J.L = 1,2. Node Y~r~l is the 

output node of N;(/1), and node Y~~~l is also the output node of Nt. Thus, the entire 
network has 3l + 6 nodes that are linear or product units and 3l nodes that compute 
functions h, fl' or f12. 
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We show that Ni shatters some set of cardinality [3, in particular, the set S = ({ ei : 

i = 1, . .. , [})3, where ei E {O, 1}1 is the unit vector with a 1 in position i and ° 
elsewhere. Every dichotomy of S can be programmed into the network parameter 
w using the following fact about the logistic function ¢ (see Koiran and Sontag, 
1998, Lemma 2): For every binary vector b E {O, l}m, b = b1 .•. bm , there is some 
real number w E [0,1] such that for i = 1, ... , m 

E { 
[0,1 /2) 

(1/2,1] 

if bi = 0, 

if bi = 1. 

Hence, for every dichotomy (So, Sd of S the parameter w can be chosen such that 
every (ei1' ei2 , ei3) E S satisfies 

1/2 if (eillei2,eis) E So, 

1/2 if (eillei2,eiJ E S1. 

Since h +i2 H i 3 .12 (w) = ¢i1 (¢i2'1 (¢i3 .12 (w))), this is the value computed by Ni on 

input (eill ei2' ei3), where ei" is the input given to network N;(p). (Input ei" selects 

the function li"'I,,-1 in N;(p).) Hence, S is shattered by Ni, implying that Ni has 
VC dimension at least [3. 



Assume now that Ii can be computed by a general recurrent neural network of size 
at most kj in time tj. Using an idea of Koiran and Sontag (1998), we unfold the 
network to obtain a feedforward network of size at most kjtj computing fj. Thus we 
can replace the nodes computing ft, ft, fl2 in Nz by networks of size k1t1, kltl, k12t12, 
respectively, such that we have a feedforward network '!J consisting of sigmoidal, 
product, and linear units. Since there are 3l units in Nl computing ft, ft, or fl2 
and at most 3l + 6 product and linear units, the size of Nt is at most c1lkl2tl2 
for some constant C1 > O. Using that Nt has one adjustable weight, we get from 
Proposition 1 that its VC dimension is at most c2l2kr2tr2 for some constant C2 > o. 
On the other hand, since Nz and Nt both shatter S, the VC dimension of Nt is at 
least l3. Hence, l3 ~ C2l2 kr2 tr2 holds, which implies that tl2 2: cl 1/2 / kl2 for some 
c > 0, and hence tl 2: cl1/4 / kl. D 

Lemma 2 shows that a single recurrent network is capable of computing every 
function fl in time O(l). The following consequence of Theorem 3 establishes that 
this bound cannot be much improved. 

Corollary 4. Every general recurrent neural network requires at least time 0(ll /4 ) 
to compute the functions fl. 

4 Conclusions and Perspectives 

We have established bounds on the computing time of analog recurrent neural 
networks. The result shows that for every network of given size there are functions 
of arbitrarily high time complexity. This fact does not rely on a bound on the 
magnitude of weights. We have derived upper and lower bounds that are rather 
tight- with a polynomial gap of order four- and hold for the computation of a 
specific family of real-valued functions in one variable. Interestingly, the upper 
bound is shown using second-order networks without sigmoidal units, whereas the 
lower bound is valid even for networks with sigmoidal units and arbitrary product 
units. This indicates that adding these units might decrease the computing time 
only marginally. The derivation made use of an upper bound on the VC dimension 
of higher-order sigmoidal networks. This bound is not known to be optimal. Any 
future improvement will therefore lead to a better lower bound on the computing 
time. 

We have focussed on product and sigmoidal units as nonlinear computing elements. 
However, the construction presented here is generic. Thus, it is possible to derive 
similar results for radial basis function units, models of spiking neurons, and other 
unit types that are known to yield networks with bounded VC dimension. The 
questions whether such results can be obtained for continuous-time networks and for 
networks operating in the domain of complex numbers, are challenging. A further 
assumption made here is that the networks compute the functions exactly. By a 
more detailed analysis and using the fact that the shattering of sets requires the 
outputs only to lie below or above some threshold, similar results can be obtained 
for networks that approximate the functions more or less closely and for networks 
that are subject to noise. 
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