
Prodding the ROC Curve: Constrained
Optimization of Classifier Performance

Michael C. Mozer*+, Robert Dodier*, Michael D. Colagrosso*+,
César Guerra-Salcedo*, Richard Wolniewicz*

* Advanced Technology Group + Department of Computer Science
Athene Software University of Colorado
2060 Broadway Campus Box 430

Boulder, CO 80302 Boulder, CO 80309

Abstract
When designing a two-alternative classifier, one ordinarily aims to maximize the
classifier’s ability to discriminate between members of the two classes. We
describe a situation in a real-world business application of machine-learning
prediction in which an additional constraint is placed on the nature of the solu-
tion: that the classifier achieve a specified correct acceptance or correct rejection
rate (i.e., that it achieve a fixed accuracy on members of one class or the other).
Our domain is predictingchurn in the telecommunications industry. Churn
refers to customers who switch from one service provider to another. We pro-
pose four algorithms for training a classifier subject to this domain constraint,
and present results showing that each algorithm yields a reliable improvement in
performance. Although the improvement is modest in magnitude, it is nonethe-
less impressive given the difficulty of the problem and the financial return that it
achieves to the service provider.

When designing a classifier, one must specify an objective measure by which the classi-
fier’s performance is to be evaluated. One simple objective measure is to minimize the
number of misclassifications. If the cost of a classification error depends on the target and/
or response class, one might utilize a risk-minimization framework to reduce the expected
loss. A more general approach is to maximize the classifier’s ability to discriminate one
class from another class (e.g., Chang & Lippmann, 1994).

An ROC curve (Green & Swets, 1966) can be used to visualize the discriminative
performance of a two-alternative classifier that outputs class posteriors. To explain the
ROC curve, a classifier can be thought of as making a positive/negative judgement as to
whether an input is a member of some class. Two different accuracy measures can be
obtained from the classifier: the accuracy of correctly identifying an input as a member of
the class (acorrect acceptance or CA), and the accuracy of correctly identifying an input
as a nonmember of the class (acorrect rejection or CR). To evaluate the CA and CR rates,
it is necessary to pick a threshold above which the classifier’s probability estimate is inter-
preted as an “accept,” and below which is interpreted as a “reject”—call this thecriterion.
The ROC curve plots CA against CR rates for various criteria (Figure 1a). Note that as the
threshold is lowered, the CA rate increases and the CR rate decreases. For a criterion of 1,
the CA rate approaches 0 and the CR rate 1; for a criterion of 0, the CA rate approaches 1

and the CR rate 0. Thus, the ROC curve is anchored at (0,1) and (1,0), and is monotoni-
cally nonincreasing. The degree to which the curve is bowed reflects the discriminative
ability of the classifier. The dashed curve in Figure 1a is therefore a better classifier than
the solid curve.

The degree to which the curve is bowed can be quantified by various measures such
as the area under the ROC curve ord’, the distance between the positive and negative dis-
tributions. However, training a classifier to maximize either the ROC area or d’ often
yields the same result as training a classifier to estimate posterior class probabilities, or
equivalently, to minimize the mean squared error (e.g., Frederick & Floyd, 1998). The
ROC area and d’ scores are useful, however, because they reflect a classifier’s intrinsic
ability to discriminate between two classes, regardless of how the decision criterion is set.
That is, each point on an ROC curve indicates one possible CA/CR trade off the classifier
can achieve, and that trade off is determined by the criterion. But changing the criterion
does not change the classifier’s intrinsic ability to discriminate.

Generally, one seeks to optimize the discrimination performance of a classifier. How-
ever, we are working in a domain where overall discrimination performance is not as criti-
cal as performance at a particular point on the ROC curve, and we are not interested in the
remainder of the ROC curve. To gain an intuition as to why this goal should be feasible,
consider Figure 1b. Both the solid and dashed curves are valid ROC curves, because they
satisfy the monotonicity constraint: as the criterion is lowered, the CA rate does not
decrease and the CR rate does not increase. Although the bow shape of the solid curve is
typical, it is not mandatory; the precise shape of the curve depends on the nature of the
classifier and the nature of the domain. Thus, it is conceivable that a classifier could pro-
duce a curve like the dashed one. The dashed curve indicates better performance when the
CA rate is around 50%, but worse performance when the CA rate is much lower or higher
than 50%. Consequently, if our goal is to maximize the CR rate subject to the constraint
that the CA rate is around 50%, or to maximize the CA rate subject to the constraint that
the CR rate is around 90%, the dashed curve is superior to the solid curve. One can imag-
ine that better performance can be obtained along some stretches of the curve by sacrific-
ing performance along other stretches of the curve. Note that obtaining a result such as the
dashed curve requires a nonstandard training algorithm, as the discrimination performance
as measured by the ROC area is worse for the dashed curve than for the solid curve.

In this paper, we propose and evaluate four algorithms for optimizing performance in
a certain region of the ROC curve. To begin, we explain the domain we are concerned with
and why focusing on a certain region of the ROC curve is important in this domain.

20 40 60 80 1000

20
40

60
80

10
0

0

correct acceptance rate

co
rr

ec
t

re
je

ct
io

n
 r

at
e

20 40

(b)

60 80 1000
correct acceptance rate

co
rr

ec
t

re
je

ct
io

n
 r

at
e

20
40

60
80

10
0

0

(a)

FIGURE 1. (a) two ROC curves reflecting discrimination performance; the dashed curve
indicates better performance. (b) two plausible ROC curves, neither of which is clearly
superior to the other.

1 OUR DOMAIN
Athene Software focuses on predicting and managing subscriberchurn in the telecommu-
nications industry (Mozer, Wolniewicz, Grimes, Johnson, & Kaushansky, 2000). “Churn”
refers to the loss of subscribers who switch from one company to the other. Churn is a sig-
nificant problem for wireless, long distance, and internet service providers. For example,
in the wireless industry, domestic monthly churn rates are 2–3% of the customer base.
Consequently, service providers are highly motivated to identify subscribers who are dis-
satisfied with their service and offer them incentives to prevent churn.

We use techniques from statistical machine learning—primarily neural networks and
ensemble methods—to estimate the probability that an individual subscriber will churn in
the near future. The prediction of churn is based on various sources of information about a
subscriber, including: call detail records (date, time, duration, and location of each call,
and whether call was dropped due to lack of coverage or available bandwidth), financial
information appearing on a subscriber’s bill (monthly base fee, additional charges for
roaming and usage beyond monthly prepaid limit), complaints to the customer service
department and their resolution, information from the initial application for service (con-
tract details, rate plan, handset type, credit report), market information (e.g., rate plans
offered by the service provider and its competitors), and demographic data.

Churn prediction is an extremely difficult problem for several reasons. First, the busi-
ness environment is highly nonstationary; models trained on data from a certain time
period perform far better with hold-out examples from that same time period than exam-
ples drawn from successive time periods. Second, features available for prediction are
only weakly related to churn; when computing mutual information between individual
features and churn, the greatest value we typically encounter is .01 bits. Third, information
critical to predicting subscriber behavior, such as quality of service, is often unavailable.

Obtaining accurate churn predictions is only part of the challenge of subscriber
retention. Subscribers who are likely to churn must be contacted by acall center and
offered some incentive to remain with the service provider. In a mathematically principled
business scenario, one would frame the challenge as maximizing profitability to a service
provider, and making the decision about whether to contact a subscriber and what incen-
tive to offer would be based on the expected utility of offering versus not offering an
incentive. However, business practices complicate the scenario and place some unique
constraints on predictive models. First, call centers are operated by a staff of customer ser-
vice representatives who can contact subscribers at a fixed rate; consequently, our models
cannot advise contacting 50,000 subscribers one week, and 50 the next. Second, internal
business strategies at the service providers constrain the minimum acceptable CA or CR
rates (above and beyond the goal of maximizing profitability). Third, contracts that Athene
makes with service providers will occasionally call for achieving a specific target CA and
CR rate. These three practical issues pose formal problems which, to the best of our
knowledge, have not been addressed by the machine learning community.

The formal problems can be stated in various ways, including: (1) maximize the CA
rate, subject to the constraint that a fixed percentage of the subscriber base is identified as
potential churners, (2) optimize the CR rate, subject to the constraint that the CA rate
should beαCA, (3) optimize the CA rate, subject to the constraint that the CR rate should
be αCR, and finally—what marketing executives really want—(4) design a classifier that
has a CA rate ofαCA and a CR rate ofαCR. Problem (1) sounds somewhat different than
problems (2) or (3), but it can be expressed in terms of alift curve, which plots the CA rate
as a function of the total fraction of subscribers identified by the model. Problem (1) thus
imposes the constraint that the solution lies at one coordinate of the lift curve, just as prob-
lems (2) and (3) place the constraint that the solution lies at one coordinate of the ROC
curve. Thus, a solution to problems (2) or (3) will also serve as a solution to (1). Although
addressing problem (4) seems most fanciful, it encompasses problems (2) and (3), and
thus we focus on it. Our goal is not altogether unreasonable, because a solution to problem

(4) has the property we characterized in Figure 1b: the ROC curve can suffer everywhere
except in the region near CA αCA and CR αCR. Hence, the approaches we consider will
trade off performance in some regions of the ROC curve against performance in other
regions. We call this prodding the ROC curve.

2 FOUR ALGORITHMS TO PROD THE ROC CURVE
In this section, we describe four algorithms for prodding the ROC curve toward a target
CA rate of αCA and a target CR rate of αCR.

2.1 EMPHASIZING CRITICAL TRAINING EXAMPLES

Suppose we train a classifier on a set of positive and negative examples from a class—
churners and nonchurners in our domain. Following training, the classifier will assign a
posterior probability of class membership to each example. The examples can be sorted by
the posterior and arranged on a continuum anchored by probabilities 0 and 1 (Figure 2).
We can identify the thresholds, θCA and θCR, which yield CA and CR rates of αCA and
αCR, respectively. If the classifier’s discrimination performance fails to achieve the target
CA and CR rates, then θCA will be lower than θCR, as depicted in the Figure. If we can
bring these two thresholds together, we will achieve the target CA and CR rates. Thus, the
first algorithm we propose involves training a series of classifiers, attempting to make clas-
sifier n+1 achieve better CA and CR rates by focusing its effort on examples from classi-
fier n that lie between θCA and θCR; the positive examples must be pushed above θCR and
the negative examples must be pushed below θCA. (Of course, the thresholds are specific
to a classifier, and hence should be indexed by n.) We call this the emphasis algorithm,
because it involves placing greater weight on the examples that lie between the two thresh-
olds. In the Figure, the emphasis for classifier n+1 would be on examples e5 through e8.
This retraining procedure can be iterated until the classifier’s training set performance
reaches asymptote.

In our implementation, we define a weighting of each example i for training classifier
n, . For classifier 1, . For subsequent classifiers, if example i is
not in the region of emphasis, or otherwise, where κe is a constant, κe > 1.

2.2 DEEMPHASIZING IRRELEVANT TRAINING EXAMPLES

The second algorithm we propose is related to the first, but takes a slightly different per-
spective on the continuum depicted in Figure 2. Positive examples below θCA—such as
e2—are clearly the most dif ficult positive examples to classify correctly. Not only are they
the most difficult positive examples, but they do not in fact need to be classified correctly
to achieve the target CA and CR rates. Threshold θCR does not depend on examples such
as e2, and threshold θCA allows a fraction (1–αCA) of the positive examples to be classified
incorrectly. Likewise, one can argue that negative examples above θCR—such as e10 and
e11—need not be of concern. Essentially , the second algorithm, which we term thedeem-
phasis algorithm, is like the emphasis algorithm in that a series of classifiers are trained,
but when training classifier n+1, less weight is placed on the examples whose correct clas-

FIGURE 2. A schematic depiction of all training examples arranged by the classifier’s
posterior. Each solid bar corresponds to a positive example (e.g., a churner) and each grey bar
corresponds to a negative example (e.g., a nonchurner).

0 1churn probability

θCA θCR

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13

λi
n λi

1 1= λi
n 1+ λi

n=
λi

n 1+ κeλ
i
n=

sification is unnecessary to achieve the target CA and CR rates for classifier n. As with the
emphasis algorithm, the retraining procedure can be iterated until no further performance
improvements are obtained on the training set. Note that the set of examples given empha-
sis by the previous algorithm is not the complement of the set of examples deemphasized
by the current algorithm; the algorithms are not identical.

In our implementation, we assign a weight to each example i for training classifier n,
. For classifier 1, . For subsequent classifiers, if example i is not

in the region of deemphasis, or otherwise, where κd is a constant, κd<1.

2.3 CONSTRAINED OPTIMIZATION

The third algorithm we propose is formulated as maximizing the CR rate while maintain-
ing the CA rate equal to αCA. (We do not attempt to simultaneously maximize the CA rate
while maintaining the CR rate equal to αCR.) Gradient methods cannot be applied directly
because the CA and CR rates are nondifferentiable, but we can approximate the CA and
CR rates with smooth differentiable functions:

,

where P and N are the set of positive and negative examples, respectively, f(x,w) is the
model posterior for input x, w is the parameterization of the model, t is a threshold, and σβ
is a sigmoid function with scaling parameter β: . The larger β
is, the more nearly step-like the sigmoid is and the more nearly equal the approximations
are to the model CR and CA rates. We consider the problem formulation in which CA is a
constraint and CR is a figure of merit. We convert the constrained optimization problem
into an unconstrained problem by the augmented Lagrangian method (Bertsekas, 1982),
which involves iteratively maximizing an objective function

with a fixed Lagrangian multiplier, ν, and then updating ν following the optimization step:
, where and are the values found by the optimization

step. We initialize and fix and and iterate until ν converges.

2.4 GENETIC ALGORITHM

The fourth algorithm we explore is a steady-state genetic search over a space defined by
the continuous parameters of a classifier (Whitley, 1989). The fitness of a classifier is the
reciprocal of the number of training examples falling between the θCA and θCR thresholds.
Much like the emphasis algorithm, this fitness function encourages the two thresholds to
come together. The genetic search permits direct optimization over a nondifferentiable cri-
terion, and therefore seems sensible for the present task.

3 METHODOLOGY
For our tests, we studied two large data bases made available to Athene by two telecom-
munications providers. Data set 1 had 50,000 subscribers described by 35 input features
and a churn rate of 4.86%. Data set 2 had 169,727 subscribers described by 51 input fea-
tures and a churn rate of 6.42%. For each data base, the features input to the classifier were
obtained by proprietary transformations of the raw data (see Mozer et al., 2000). We chose
these two large, real world data sets because achieving gains with these data sets should be
more difficult than with smaller, less noisy data sets. Plus, with our real-world data, we
can evaluate the cost savings achieved by an improvement in prediction accuracy. We per-
formed 10-fold cross-validation on each data set, preserving the overall churn/nonchurn
ratio in each split.

In all tests, we chose and , values which, based on our
past experience in this domain, are ambitious yet realizable targets for data sets such as

λi
n λi

1 1= λi
n 1+ λi

n=
λi

n 1+ κdλ
i
n=

CA w t,() 1
P
------ σβ f xi w,() t–()

i P∈
∑= CR w t,() 1

N
------- σβ t f xi w,()–()

i N∈
∑=

σβ y() 1 exp βy–()+() 1–
=

A w t,() CR w t,() ν CA w t,() αCA–
µ
2
--- CA w t,() αCA–

2
+ +=

ν ν µ CA w* t*,() αCA–+← w* t*

ν 1= µ 1= β 10=

αCR 0.90= αCA 0.50=

these. We used a logistic regression model (i.e., a no hidden unit neural network) for our
studies, believing that it would be more difficult to obtain improvements with such a
model than with a more flexible multilayer perceptron. For the emphasis and deemphasis
algorithms, models were trained to minimize mean-squared error on the training set. We
chose κe = 1.3 and κd = .75 by quick exploration. Because the weightings are cumulative
over training restarts, the choice of κ is not critical for either algorithm; rather, the magni-
tude of κ controls how many restarts are necessary to reach asymptotic performance, but
the results we obtained were robust to the choice of κ. The emphasis and deemphasis algo-
rithms were run for 100 iterations, which was the number of iterations required to reach
asymptotic performance on the training set.

4 RESULTS
Figure 3 illustrates training set performance for the emphasis algorithm on data set 1. The
graph on the left shows the CA rate when the CR rate is .9, and the graph on the right show
the CR rate when the CA rate is .5. Clearly, the algorithm appears to be stable, and the
ROC curve is improving in the region around (αCA, αCR).

Figure 4 shows cross-validation performance on the two data sets for the four prod-
ding algorithms as well as for a traditional least-squares training procedure. The emphasis
and deemphasis algorithms yield reliable improvements in performance in the critical
region of the ROC curve over the traditional training procedure. The constrained-optimi-
zation and genetic algorithms perform well on achieving a high CR rate for a fixed CA
rate, but neither does as well on achieving a high CA rate for a fixed CR rate. For the con-
strained-optimization algorithm, this result is not surprising as it was trained asymmetri-
cally, with the CA rate as the constraint. However, for the genetic algorithm, we have little
explanation for its poor performance, other than the difficulty faced in searching a contin-
uous space without gradient information.

5 DISCUSSION
In this paper, we have identified an interesting, novel problem in classifier design which is
motivated by our domain of churn prediction and real-world business considerations.
Rather than seeking a classifier that maximizes discriminability between two classes, as
measured by area under the ROC curve, we are concerned with optimizing performance at
certain points along the ROC curve. We presented four alternative approaches to prodding
the ROC curve, and found that all four have promise, depending on the specific goal.

Although the magnitude of the gain is small—an increase of about .01 in the CR rate
given a target CA rate of .50—the impro vement results in significant dollar savings. Using
a framework for evaluating dollar savings to a service provider, based on estimates of sub-
scriber retention and costs of intervention obtained in real world data collection (Mozer et

0.365

0.37

0.375

0.38

0.385

0.39

0.395

0.4

0 5 10 15 20 25 30 35 40 45 50

C
A

 r
at

e

Iteration

0.81

0.815

0.82

0.825

0.83

0.835

0.84

0.845

0 5 10 15 20 25 30 35 40 45 50

C
R

 r
at

e

Iteration

FIGURE 3. Training set performance for the emphasis algorithm on data set 1. (a) CA rate as
a function of iteration for a CR rate of .9; (b) CR rate as a function of iteration for a CA rate of
.5. Error bars indicate +/–1 standard error of the mean.

al., 2000), we obtain a savings of $11 per churnable subscriber when the (CA, CR) rates
go from (.50, .80) to (.50, .81), which amounts to an 8% increase in profitability of the
subscriber intervention effort.

These figures are clearly promising. However, based on the data sets we have stud-
ied, it is difficult to know whether another algorithm might exist that achieves even greater
gains. Interestingly, all algorithms we proposed yielded roughly the same gains when suc-
cessful, suggesting that we may have milked the data for whatever gain could be had,
given the model class evaluated. Our work clearly illustrate the difficulty of the problem,
and we hope that others in the NIPS community will be motivated by the problem to sug-
gest even more powerful, theoretically grounded approaches.

6 ACKNOWLEDGEMENTS
No white males were angered in the course of conducting this research. We thank Lian Yan and
David Grimes for comments and assistance on this research. This research was supported in part by
McDonnell-Pew grant 97-18, NSF award IBN-9873492, and NIH/IFOPAL R01 MH61549–01A1.

7 REFERENCES
Bertsekas, D. P. (1982). Constrained optimization and Lagrange multiplier methods. NY: Academic.
Chang, E. I., & Lippmann, R. P. (1994). Figure of merit training for detection and spotting. In J. D.

Cowan, G. Tesauro, & J. Alspector (Eds.), Advances in Neural Information Processing Systems
6 (1019–1026). San Mateo, CA: Morgan Kaufmann.

Frederick, E. D., & Floyd, C. E. (1998). Analysis of mammographic findings and patient history
data with genetic algorithms for the prediction of breast cancer biopsy outcome. Proceedings of
the SPIE, 3338, 241–245.

Green, D. M., & Swets, J. A. (1966). Signal detection theory and psychophysics. New York: Wiley.
Mozer, M. C., Wolniewicz, R., Grimes, D., Johnson, E., & Kaushansky, H. (2000). Maximizing rev-

enue by predicting and addressing customer dissatisfaction. IEEE Transactions on Neural Net-
works, 11, 690–696.

Whitley, D. (1989). The GENITOR algorithm and selective pressure: Why rank-based allocation of
reproductive trials is best. In D. Schaffer (Ed.), Proceedings of the Third International Confer-
ence on Genetic Algorithms (pp. 116–121). San Mateo, CA: Morgan Kaufmann.

ISP
Test Set

0.350

0.355

0.360

0.365

0.370

0.375

0.380

0.385

0.390

std emph deemph constr GA

C
A

 r
at

e

0.800

0.805

0.810

0.815

0.820

0.825

0.830

0.835

0.840

std emph deemph constr GA

C
R

 r
at

e

Wireless
Test Set

0.300

0.325

0.350

0.375

std emph deemph constr GA

C
A

 r
at

e

0.800

0.825

0.850

0.875

0.900

std emph deemph constr GA

C
R

 r
at

e

FIGURE 4. Cross-validation performance on the two data sets for the standard training
procedure (STD), as well as the emphasis (EMPH), deemphasis (DEEMPH), constrained
optimization (CONSTR), and genetic (GEN) algorithms. The left column shows the CA rate for
CR rate .9; the right column shows the CR rate for CA rate .5. The error bar indicates one
standard error of the mean over the 10 data splits.

Data set 1

Data set 2

