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Abstract

The support vector machine (SVM) is known for its good performance in
binary classification, but its extension to multi-class classification is still
an on-going research issue. In this paper, we propose a new approach
for classification, called the import vector machine (IVM), which is built
on kernel logistic regression (KLR). We show that the IVM not only per-
forms as well as the SVM in binary classification, but also can naturally
be generalized to the multi-class case. Furthermore, the I\VM provides an
estimate of the underlying probability. Similar to the “support points” of
the SVM, the IVM model uses only a fraction of the training data to index
kernel basis functions, typically a much smaller fraction than the SVM.
This gives the IVM a computational advantage over the SVM, especially
when the size of the training data set is large.

1 Introduction

In standard classification problems, we are given a set of training data (z1,¥1), (z2,¥2),
...(zn,yn), where the output y; is qualitative and assumes values in a finite set C. We
wish to find a classfication rule from the training data, so that when given a new input z,
we can assign a class ¢ from C to it. Usually it is assumed that the training data are an
independently and identically distributed sample from an unknown probability distribution
P(X,Y).

The support vector machine (SVM) works well in binary classification, i.e. y € {0,1}, but
its appropriate extension to the multi-class case is still an on-going research issue. Another
weakness of the SVM is that it only estimates sign[p(z) — 1/2], while the probability p(z)
is often of interest itself, where p(z) = P(Y = 1|X = z) is the conditional probability
of a point being in class 1 given X = z. In this paper, we propose a hew approach, called
the import vector machine (IVM), to address the classification problem. We show that the
IVM not only performs as well as the SVM in binary classification, but also can naturally
be generalized to the multi-class case. Furthermore, the IVM provides an estimate of the
probability p(x). Similar to the “support points” of the SVM, the IVM model uses only a
fraction of the training data to index the kernel basis functions. We call these training data
import points. The computational cost of the SVM is O(N?), while the computational cost
of the IVM is O(N2g?), where ¢ is the number of import points. Since ¢ does not tend to



increase as IV increases, the IVM can be faster than the SVM, especially for large training
data sets. Empirical results show that the number of import points is usually much less than
the number of support points.

In section (2), we briefly review some results of the SVM for binary classification and
compare it with kernel logistic regression (KLR). In section (3), we propose our IVM
algorithm. In section (4), we show some simulation results. In section (5), we generalize
the IVM to the multi-class case.

2 Support vector machines and kernel logistic regression

The standard SVM produces a non-linear classification boundary in the original input space
by constructing a linear boundary in a transformed version of the original input space.
The dimension of the transformed space can be very large, even infinite in some cases.
This seemingly prohibitive computation is achieved through a positive definite reproducing
kernel K, which gives the inner product in the transformed space.

Many people have noted the relationship between the SVM and regularized function es-
timation in the reproducing kernel Hilbert spaces (RKHS). An overview can be found in
Evgeniou et al. (1999), Hastie et al. (2001) and Wahba (1998). Fitting an SVM is equiva-
lent to minimizing:
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with f = b+ h, h € Hk, b € R. Hg is the RKHS generated by the kernel K. The
classification rule is given by sign[f].

By the representer theorem (Kimeldorf et al (1971)), the optimal f(x) has the form:
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It often happens that a sizeable fraction of the N values of a; can be zero. This is a
consequence of the truncation property of the first part of criterion (1). This seems to be an
attractive property, because only the points on the wrong side of the classification boundary,
and those on the right side but near the boundary have an influence in determining the
position of the boundary, and hence have non-zero a;’s. The corresponding z;’s are called
support points.

Notice that (1) has the form loss+penalty. The loss function (1—y f) is plotted in Figure
1, along with several traditional loss functions. As we can see, the negative log-likelihood
(NLL) of the binomial distribution has a similar shape to that of the SVM. If we replace
(1 —yf)4 in (1) with In(1 + e~¥¥), the NLL of the binomial distribution, the problem
becomes a KLR problem. We expect that the fitted function performs similarly to the SVM
for binary classfication.

There are two immediate advantages of making such a replacement: (a) Besides giving
a classification rule, the KLR also offers a natural estimate of the probability p(z) =
ef /(1 + ef), while the SVM only estimates sign[p(z) — 1/2]; (b) The KLR can natu-
rally be generalized to the multi-class case through kernel multi-logit regression, whereas
this is not the case for the SVM. However, because the KLR compromises the hinge loss
function of the SVM, it no longer has the “support points” property; in other words, all the
a;’s in (2) are non-zero.

KLR is a well studied problem; see Wahba et al. (1995) and references there; see also
Green et al. (1985) and Hastie et al. (1990).



Figure 1: Several loss functions, y € {—1,1}

The computational cost of the KLR is O(N?); to save the computational cost, the IVM
algorithm will find a sub-model to approximate the full model (2) given by the KLR. The
sub-model has the form:
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where S is a subset of the training data {z1, 22, . . . x }, and the data in S are called import
points. The advantage of this sub-model is that the computational cost is reduced, espe-
cially for large training data sets, while not jeopardizing the performance in classification.

Several other researchers have investigated techniques in selecting the subset S. Lin et al.
(1998) divide the training data into several clusters, then randomly select a representative
from each cluster to make up S. Smola et al. (2000) develope a greedy technique to se-
quentially select ¢ columns of the kernel matrix [K (x;, z;)]~xa, such that the span of
these ¢ columns approximates the span of [K (z;,z;)]nx~ Well in the Frobenius norm.
Williams et al. (2001) propose randomly selecting ¢ points of the training data, then
using the Nystrom method to approximate the eigen-decomposition of the kernel matrix
[K (s, ;)] nxn, and expanding the results back up to N dimensions. None of these meth-
ods uses the output y; in selecting the subset S (i.e., the procedure only involves ;). The
IVM algorithm uses both the output y; and the input z; to select the subset S, in such a
way that the resulting fit approximates the full model well.

3 Import vector machine

Following the tradition of logistic regression, we let y; € {0,1} for the rest of this paper.
For notational simplicity, the constant term in the fitted function is ignored.

In the KLR, we want to minimize:
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From (2), it can be shown that this is equivalent to the finite dimensional form:
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where @ = (a1, ...an)T; the regressor matrix K, = [K (z;,z;)|nxn~; and the regulariza-
tion matrix K, = K,.

To find a@, we set the derivative of H with respect to @ equal to 0, and use the Newton-
Raphson method to iteratively solve the score equation. It can be shown that the Newton-
Raphson step is a weighted least squares step:

(5) a® = (KTWK, + \K,) "KWz

where @*) is the value of @ in the kth step, Z = (K,a*~") + W~ (7 — p)). The weight
matrix is W = diag[p(x;)(1 — p(x;))|nxN-

As mentioned in section 2, we want to find a subset S of {z1, z3, ... zx}, such that the
sub-model (3) is a good approximation of the full model (2). Since it is impossible to search
for every subset S, we use the following greedy forward strategy:

3.1 Basicalgorithm

(Bl) LetS =0, R = {x1,22,...,an}, k= 1.
(B2) Foreachz; € R, let
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where the regressor matrix K, = [K(z;,2;)|Nx(q+1), Ti € {T1,22,...2Nn},
zj € 8 U {x}; the regularization matrix K} = [K(z;, %1)](q4+1)x(g+1)» L5, T1 €
SU{xi}; =S|
(B3) Let
Tp- = argmin,, o H(z;).
LetS=SU{zi}, R=R\{xn}, H, = H(z;+), k =k + 1.
(B4) Repeat steps (B2) and (B3) until Hj, converges.

We call the points in S import points.

3.2 Revised algorithm

The above algorithm is computationally feasible, but in step (B2) we need to use the
Newton-Raphson method to find @ iteratively. When the number of import points ¢ be-
comes large, the Newton-Raphson computation can be expensive. To reduce this computa-
tion, we use a further approximation.

Instead of iteratively computing @*) until it converges, we can just do a one-step iteration,
and use it as an approximation to the converged one. To get a good approximation, we
take advantage of the fitted result from the current “optimal” S, i.e., the sub-model when
|S| = ¢, and use it as the initial value. This one-step update is similar to the score test in
generalized linear models (GLM); but the latter does not have a penalty term. The updating
formula allows the weighted regression (5) to be computed in O(Ngq) time.

Hence, we have the revised step (B2) for the basic algorithm:



(B2*) For each z; € R, correspondingly augment K, with a column, and K, with a
column and a row. Use the updating formula to find & in (5). Compute (6).

3.3 Stopping rulefor adding point to S

In step (B4) of the basic algorithm, we need to decide whether Hy has converged. A
natural stopping rule is to look at the regularized NLL. Let Hq, Ho,... be the sequence
of regularized NLL’s obtained in step (B4). At each step k, we compare Hy, with Hj, .,

where r is a pre-chosen small integer, for example r = 1. If the ratio % is less
than some pre-chosen small number «, for example, a = 0.001, we stop adding new import

pointsto S.

3.4 Choosing theregularization paramter A

So far, we have assumed that the regularization parameter X is fixed. In practice, we also
need to choose an “optimal” A. We can randomly split all the data into a training set and a
tuning set, and use the misclassification error on the tuning set as a criterion for choosing
A. To reduce the computation, we take advantage of the fact that the regularized NLL
converges faster for a larger A. Thus, instead of running the entire revised algorithm for
each A, we propose the following procedure, which combines both adding import points to
S and choosing the optimal A:

(C1) Start with a large regularization parameter A.
(02) LetS=0,R = {.1'1,.%'2, ... ,.CL'N}, k=1

(C3) Run steps (B2*), (B3) and (B4) of the revised algorithm, until the stopping cri-
terion is satisfied at S = {z;,..., 2, } . Along the way, also compute the
misclassfication error on the tuning set.

(C4) Decrease X to a smaller value.
(C5) Repeat steps (C3) and (C4), starting with S = {x1,... , Tig, }-

We choose the optimal A as the one that corresponds to the minimum misclassification error
on the tuning set.

4 Simulation

In this section, we use a simulation to illustrate the IVM method. The data in each class
are generated from a mixture of Gaussians (Hastie et al. (2001)). The simulation results
are shown in Figure 2.

4.1 Remarks

The support points of the SVM are those which are close to the classification boundary or
misclassified and usually have large weights [p(z)(1 — p(z))]. The import points of the
IVM are those that decrease the regularized NLL the most, and can be either close to or
far from the classification boundary. This difference is natural, because the SVM is only
concerned with the classification sign[p(z) — 1/2], while the IVM also focuses on the
unknown probability p(x). Though points away from the classification boundary do not
contribute to determining the position of the classification boundary, they may contribute
to estimating the unknown probability p(x). Figure 3 shows a comparison of the SVM and
the IVM. The total computational cost of the SVM is O(IV3), while the computational cost
of the IVM method is O(N2¢2), where ¢ is the number of import points. Since ¢ does not
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Figure 2: Radial kernel is used. N = 200. The left and middle panels illustrate how to choose
the optimal . » = 1, @ = 0.001, X decreases from e'© to e ~1°. The minimum misclassification
rate 0.219 is found to correspond to A = 0.135. The right panel is for the optimal A = 0.135. The
stopping criterion is satisfied when |S| = 21.

tend to increase as NV increases, the computational cost of the IVM can be smaller than that
of the SVM, especially for large training data sets.

5 Multi-class case

In this section, we briefly describe a generalization of the IVM to multi-class classification.
Suppose there are M + 1 classes. We can write the response as an M -vector g, with each
component being either 0 or 1, indicating which class the observation is in. Therefore y; =
1,y; =0, j #k, j < M indicates the response is in the kth class, and y; = 0,j < M
indicates the response is in the M + 1th class. Using the M + 1th class as the basis, the

multi-logit can be written as fi = In(p1 /pp+1)s --- , fir = m(Pp/Pr+1), farsr = 0.
Hence the Bayes classification rule is given by:

¢ =argmaXycrq o, .. ,M+1}fk

We use i to index the observations, j to index the classes, i.e. ¢ =1,...N, j=1,... M.
Then the regularized negative log-likelihood is

N
o A
) H=_ Z[fo(xz) —In(1+ efl@) ooy efM(Ei))] + §||f||g-£1<
i=1

where 7; = (yi1, Uiz, - - - »yin) Ty (1) = (fu(@i), fo(@i),- -, far(z:))T, and
M
713 = Z 175113
j=1

-

Using the representer theorem (Kimeldorf et al. (1971)), the jth element of f(x), f;(z),
which minimizes H has the form

N
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SVM - with 107 support points IVM - with 21 import points

Training Error: 0.160
Test Error: 0.218
Bayes Error:  0.210

Training Error: 0.15
Test Error: 0.21
Bayes Error:  0.210 *

Figure 3: The solid lines are the classification boundaries; the dotted lines are the Bayes rule
boundaries. For the SVM, the dashed lines are the edges of the margin. For the IVM, the dashed lines
are the p(z) = 0.25 and 0.75 lines.

Hence, (7) becomes
N A M
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where A = (@ ...dm) = (ai;), K, and K, are defined in the same way as in the binary

case; and K, (%, ) is the ith row of K,.

The multi-class VM procedure is similar to the binary case, and the computational cost is
O(MN?%g?). Figure 4 is a simulation of the multi-class IVM. The data in each class are
generated from a mixture of Gaussians (Hastie et al. (2001)).

Multi-class IVM - with 32 import points

Training Error: 0.237 y
Test Error: 0.259 :
Bayes Error:  0.251:

Figure 4: Radial kernel is used. M +1 =3, N = 300, A = 0.368, |S| = 32.



6 Conclusion

We have discussed the import vector machine (1VM) method in both binary and multi-class
classification. We showed that it not only performs as well as the SVM, but also provides
an estimate of the probability p(x). The computational cost of the IVM is O(N2¢?) for
the binary case and O(M N?2¢?) for the multi-class case, where ¢ is the number of import
points.
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