Thin Junction Trees

FrancisR. Bach Michael I. Jordan
Computer Science Division Computer Science and Statistics
University of California University of California
Berkeley, CA 94720 Berkeley, CA 94720
fbach@cs.berkeley.edu jordan@cs.berkeley.edu
Abstract

We present an algorithm that induces a class of models with thin junction
trees—models that are characterized by an upper bound on the size of
the maximal cliques of their triangulated graph. By ensuring that the
junction tree is thin, inference in our models remains tractable throughout
the learning process. This allows both an efficient implementation of
an iterative scaling parameter estimation algorithm and also ensures that
inference can be performed efficiently with the final model. We illustrate
the approach with applications in handwritten digit recognition and DNA
splice site detection.

I ntroduction

Many learning problems in complex domains such as bioinformatics, vision, and infor-
mation retrieval involve large collections of interdependent variables, none of which has a
privileged status as a response variable or class label. In such problems, the goal is gener-
ally that of characterizing the principal dependencies in the data, a problem which is often
cast within the framework of multivariate density estimation. Simple models are often pre-
ferred in this setting, both for their computational tractability and their relative immunity
to overfitting. Thus models involving low-order marginal or conditional probabilities—
e.g., naive independence models, trees, or Markov models—are in wide use. In problems
involving higher-order dependencies, however, such strong assumptions can be a serious
liability.

A number of methods have been developed for selecting models of higher-order depen-
dencies in data, either within the maximum entropy setting—in which features are se-
lected [9, 16]—and the graphical model setting—in which edges are selected [8]. Sim-
plicity also plays an important role in the design of these algorithms; in particular, greedy
methods that add or subtract a single feature or edge at a time are generally employed. The
model that results at each step of this process, however, is often not simple, and this is
problematic both computationally and statistically in large-scale problems.

In the current paper we describe a methodology that can be viewed as a generalization of
the Chow-Liu algorithm for constructing tree models [2]. Note that tree models have the
property that their junction trees have no more than two nodes in any clique—the treewidth
of tree models is one. In our generalization, we allow the treewidth to be a larger, but still
controlled, value. We fit data within the space of models having “thin” junction trees.

Models with thin junction trees are tractable for exact inference, indeed the complexity of
any type of inference (joint, marginal, conditional) is controlled by the upper bound that
is imposed on the treewidth. This makes it possible to achieve some of the flexibility that
is often viewed as a generic virtue of generative models, but is not always achievable in
practice. For example, in the classification setting we are able to classify partially observed
data (e.g., occluded digits) in a simple and direct way—we simply marginalize away the
unobserved variables, an operation which is tractable in our models. We illustrate this
capability in a study of handwritten digit recognition in Section 4.2, where we compare thin
junction trees and support vector machines (SVMs), a discriminative technique which does
not come equipped with a simple and principled method for handling partially observed
data. As we will see, thin junction trees are quite robust to missing data in this domain.

There are a number of issues that need to be addressed in our framework. In particular, tree
models come equipped with particularly efficient algorithms for parameter estimation and
model selection—algorithms which do not generalize readily to non-tree models, including
thin junction tree models. It is important to show that efficient algorithms can nonetheless
be found to fit such models. We show how this can be achieved in Sections 1, 2 and 3.
Empirical results using these algorithms are presented in Section 4.

1 Featureinduction

We assume an input space X with M variables and a target probability distribution 5. Our
goal is to find a probability distribution ¢ that minimizes the Kullback-Leibler divergence
D(p ||). Consider a vector-valued “feature” or “sufficient statistic” f : X — R*', where
F' is the dimensionality of the feature space. The feature f can also be thought in terms
of its components as a set of F' real-valued features (f;). We focus on exponential family
distributions (also known as “Gibbs” or “maximum entropy” distributions) based on these
features: q(x) = qo(x) exp(X - f(z))/Z where A\ = ()\;) € R¥ is a parameter vector,
qo is a base-measure (typically uniform), and Z is the normalizing constant. (Section 3
considers the closely-related problem of inducing edges rather than features).

Each feature is a function of a certain subset of variables, and we let T), Cc V =
{1,2,..., M} index the subset of variables referred to by feature fi. Let us consider
the undirected graphical model G = (V, &), where the set of edges £ is the set of all pairs
included in at least one T}. With this definition the T}, are the maximal cliques of the graph
and, if gy is decomposable in this graph, the exponential family distribution with features
f and reference distribution ¢¢ is also decomposable in this graph. We assume without
loss of generality that the graph is connected. For each possible triangulation of the graph,
we can define a junction tree [4], where for all & there exists a maximal clique containing
Ty. The complexity of exact inference depends on the size of the maximal clique of the
triangulated graph. We define the treewidth 7 of our original graph to be one less than the
minimum possible value of this maximal clique size for all possible triangulations. We say
that a graphical model has a thin junction tree if its treewidth 7 is small.

Our basic feature induction algorithm is a constrained variant of that proposed by [9]. Given
a set of available features, we perform a greedy search to find the set of features that enables
the best possible fit to 5, under the constraint of having a thin junction tree. At each step,
candidates are ranked according to the gain in KL divergence, with respect to the empirical
distribution, that would be achieved by their addition to the current set of features. Features
that would generate a graphical cover with treewidth greater than a given upper bound 7
are removed from the ranking.

The parameter values A are held fixed during each step of the feature ranking process. Once
a set of candidate features are chosen, however, we reestimate all of the parameters (using
the algorithm to be described in Section 2) and iterate.

FEATUREINDUCTION

1. Initialization: ¢ = qo, f = @, A = @, a set of available features

2. Repeat steps (a) to (d) until no further progress is made with respect to a model
selection criterion (e.g., MDL or cross-validation)

(a) Ranking: generate samples from ¢ and rank feature candidates according to
the KL gain

(b) Elimination: remove all candidates that would generate a model with
treewidth greater than 7

(c) Selection: select the m best features g1, . - ., g, and add them to f

(d) Parameter Estimation: Estimate A using the junction tree implementation of
Iterative Scaling (see Section 2)

Freezing the parameters during the feature ranking step is suboptimal, but it yields an
essential computational efficiency. In particular, as shown by [9], under these conditions we
can rank a new feature f by solving a polynomial equation whose degree is the number of
values f can take minus one, and whose coefficients are expectations under ¢ of functions
of f. This equation has only one root and can be solved efficiently by Newton’s method.
When the feature f is binary the process is even more efficient—the equation is linear and
can be solved directly. Consequently, with a single set of samples from ¢, we can rank
many features very cheaply.

For the feature elimination operation, algorithms exist that determine in time linear in the
number of nodes whether a graph has a treewidth smaller than 7, and if so output a triangu-
lation in which all cliques are of size less than 7 [1]. These algorithms are super-exponential
in 7, however, and thus are applicable only to problems with small treewidths. In practice
we have had success using fast heuristic triangulation methods [11] that allow us to guar-
antee the existence of a junction tree with a maximal clique no larger than 7 for a given
model. (This is a conservative technique that may occasionally throw out models that in
fact have small treewidth).

A critical bottleneck in the algorithm is the parameter estimation step, and it is important
to develop a parameter estimation algorithm that exploits the bounded treewidth property.
We now turn to this problem.

2 lterative Scaling using the junction tree

Fitting an exponential family distribution under expectation constraints is a well studied
problem; the basic technique is known as Iterative Scaling. A generalization of Iterative
Proportional Fitting (IPF), it updates the parameters \; sequentially [5]. Algorithms that
update the parameters in parallel have also been proposed; in particular the Generalized
Iterative Scaling algorithm [6], which imposes the constraint that the features sum to one,
and the Improved lIterative Scaling algorithm [9], which removes this constraint. These
algorithms have an important advantage in our setting in that, for each set of parameter
updates, they only require computations of expectation that can all be estimated with a
single set of samples from the current distribution.

When the input dimensionality is large, however, we would like to avoid sampling algo-
rithms altogether. To do so we exploit the bounded treewidth of our models. We present
a novel algorithm that uses the junction tree and the structure of the problem to speed up
parameter estimation. The algorithm generalizes to Gibbs distributions the “effective IPF”
algorithm of [10].

When working with a junction tree, a efficient way of performing Iterative Scaling is to
update parameters block by block so that each update is performed for a relatively small

number of features on a small number of variables. Each block can be fit with any pa-
rameter estimation algorithm, in particular Improved Iterative Scaling (11S). The following
algorithm exploits this idea by grouping the features whose supports are in the same clique
of the triangulated graph. Thus, parameter estimation is done in spaces of dimensions at
most 7 + 1, and all the needed expectations can be evaluated cheaply.

2.1 Notation

Let f be our F-dimensional feature. Let (C;)o<icn. denote the maximal cliques of the
triangulated graph, with potentials ¢;,. We assign each feature f, to one of the cliques C;
that contains T}, For each clique C; we denote F; = (f,, ..., fkn].) as the set of features

assigned to Cj.

2.2 Algorithm
EFFICIENTITERATIVESCALING

1. Initialization:
—Construct a junction tree associated with the subsets {7 = supp(fx)}
—Assign each f, to one C;, such that T, C C; (equivalent to determining F; =
(fk17 .- '7fkn]-) for a”])
-Set A = (\1,...,Ar) = 0 and decompose go onto the junction tree
=Setg = qo = [[; ¢c;
2. Loop until convergence: Repeat step (3) until convergence of the A’s
3. Loop through all cliques: Repeat steps (a) to (c) for all cliques C};

(a) Define the root of the junction tree to be C;

(b) Collect evidence from the leaves to the root of the junction tree and normalize
potential ¢c;

(c) Calculate the maximum likelihood |C;|-dimensional exponential family dis-
tribution with features F; and reference distribution ¢¢;, using I1S. Replace
¢¢; by this distribution and add the resulting parameters (one for each feature
in F}) to the corresponding A’s: (A, .- -, Ak,).

After step (b), the potential ¢¢; is exactly ¢ marginalized to C}, so that performing IIS for
the features F); can be done using ¢c; instead of the full distribution g. Moreover, each
pass through all the cliques is equivalent to one pass of Iterative Scaling and therefore this
algorithm converges to the maximum likelihood distribution.

3 Edgeinduction

Thus far we have emphasized the exponential family representation. Our algorithm can,
however, be adapted readily to the problem of learning the structure of a graphical model.
This is achieved by using features that are indicators of subsets of variables, ensuring that
there is one such indicator for every combination of values of the variables in a clique. In
this case, Iterative Scaling reduces to Iterative Proportional Fitting.

We generally employ a further approximation when ranking and selecting edges. In par-
ticular, we evaluate an edge only in terms of the two variables associated directly with the
edge. The clique formed by the addition of the edge, however, may involve additional
higher-order dependencies, which can be parameterized and incorporated in the model.
Evaluating edges in this way thus underestimates the potential gain in KL divergence.

20

15

10

0 10 20 30

Figure 1: (Left) Circular Boltzmann machine of treewidth 4. (Right) Proportion (in %) of
edges not in common between the fitted model and the generating model vs the number of
available training examples (in thousands).

We should not expect to be able to find an exact edge-selection method—recent work by
Srebro [15] has shown that the related problem of finding the maximum likelihood graphi-
cal model with bounded treewidth is NP-hard.

4 Empirical results

4.1 Small graphswith known generative model

In this experiment we generate samples from a known graphical model and fit our model
to the data. We consider circular Boltzmann machines of known treewidth equal to 4 as
shown in Figure 1. Our networks all have 32 nodes and the weights were selected from a
uniform distribution in [—2; —1] U [1; 2]—so that each edge is significant. For an increasing
number of training samples, ten replications were performed for each case using our feature
induction algorithm with maximum treewidth equal to 4. Figure 1 shows that with enough
samples we are able to recover the structure almost exactly (up to 0.7% of the original
edges).

4.2 MNIST digit dataset

In this section we study the performance of the thin junction tree method on the MNIST
dataset of handwritten digits. While discriminative methods outperform generative meth-
ods in this high-dimensional setting [12], generative methods offer capabilities that are not
provided by discriminative classifiers; in particular, the ability to deal with large fractions
of missing pixels and the ability to to reconstruct images from partial data. It is of interest
to see how much performance loss we incur and how much robustness we gain by using a
sophisticated generative model for this problem.

The MNIST training set is composed of 28 x 28 4-bit grayscale pixels that have been
resized and cropped to 16 x 16 binary images (an example is provided in the leftmost plots
in Figure 2). We used thin junction trees as density estimators in the 256-dimensional pixel
space by training ten different models, one for each of the ten classes. We used binary
features of the form [], 5(z;; = 1). No vision-based techniques such as de-skewing or
virtual examples were used. We utilized ten percent fractions of the training data for cross-
validation and test.

Density estimation: The leftmost plot in Figure 3 shows how increasing the maximal al-
lowed treewidth, ranging from 1 (trees) to 15, enables a better fit to data.

Classification: We built classifiers from the bank of ten thin junction tree (“TJT”) models
using one of the following strategies: (1) take the maximum likelihood among the ten

22.7.7 ¢

Figure 2: Digit from the MNIST database. From left to right, original digit, cropped and
resized digits used in our experiments, 50% of missing values, 75% of missing values,
occluded digit.

70 100
80 x
65
60 x
60
40 x
55 20 8
X
50 0
0 5 10 15 0 50 100

Figure 3: (Left) Negative log likelihood for the digit 2 vs maximal allowed treewidth.
(Right) Error rate as a function of the percentage of erased pixels for the TJT classifier
(plain) and a support vector machine (dotted). See text for details.

models (TJT-ML), or (2) train a discriminative model using the outputs of the ten models.
We used softmax regression (TJT-Softmax) and the support vector machine (TJT-SVM) in
the latter case.

The classification error rates were as follows: LeNet 0.7, SVM 0.8, Product of experts, 2.0,
TJT-SVM 3.8, TJT-Softmax 4.2, TIT-ML 5.3, Chow-Liu 8.5, and Linear classifier 12.0. (See
[12] and [13] for further details on the non-TJT models).

It is important to emphasize that our models are tractable for full joint inference; indeed,
the junction trees have a maximal clique size of 10 in the largest models we used on the ten
classes. Thus we can use efficient exact calculations to perform inference. The following
two sections demonstrate the utility of this fact.

Missing pixels: We ran an experiment in which pixels were chosen uniformly at random and
erased, as shown in Figure 2. In our generative model, we treat them as hidden variables
that were marginalized out. The rightmost plot in Figure 3 shows the error rate on the
testing set as a function of the percentage of unknown pixels, for our models and for a
SVM. In the case of the SVM, we used a polynomial kernel of degree four [7] and we tried
various heuristics to fill in the value of the non-observed pixels, such as the average of that
pixel over the training set or the value of a blank pixel. Best classification performance
was achieved with replacing the missing value by the value of a blank pixel. Note that very
little performance decrement is seen for our classifier even with up to 50 percent of the
pixels missing, while for the SVM, although performance is better for small percentages,
performance degrades more rapidly as the percentage of erased digits increases.

Reconstruction: We conducted an additional experiment in which the upper halves of im-
ages were erased. We ran the junction tree inference algorithm to fill in these missing
values, choosing the maximizing value of the conditional probability (max-propagation).
Figure 3 shows the results. For each line, from left to right, we show the original digit, the
digit after erasure, reconstructions based on the model having the maximum likelihood, and

F v 0.0, 0. 5

Lo LT 6
ed LE T
B

N

3

U
M~ o

2 2 6

3 2 3565 . Q
e P I R G, 7 . 72

Figure 4: Reconstructions of images whose upper halves have been deleted. See text for
details.

al

O\ D G 59

3
&
. 1.
[

3

-
D

reconstruction based on the model having the second and third largest values of likelihood.

4.3 SPLICE Dataset

The task in this dataset is to classify splice junctions in DNA sequences. Splice junctions
can either be an exon/intron (EI) boundary, an intron/exon (IE) boundary, or no bound-
ary. (Introns are the portions of genes that are spliced out during transcription; exons are
retained in the MRNA).

Each sample is a sequence of 60 DNA bases (where each base can take one of four values,
A,G,C, or T). The three different classes are: EIl exactly at the middle (between the 30th
and the 31st bases), IE exactly at the middle (between the 30th and the 31st bases), no
splice junction. The dataset is composed of 3175 training samples. In order to be able to
compare to previous experiments using this dataset, performance is assessed by picking
2000 training data points at random and testing on the 1175 others, with 20 replications.

We treat classification as a density estimation problem in this case by treating the class
variable y as another variable. We classify by choosing the value of y that maximizes the
conditional probability p(y|x). We tested both feature induction and edge induction; in the
former case only binary features that are products of features of the form §(z; = a;) were
tested and induced. MDL was used to pick the number of features or edges.

Our feature induction algorithm, with a maximum treewidth equal to 5, gave an error rate
of 3.4%, while the edge induction algorithm gave an error rate of 4.1%. This is better than
the best reported results in the literature; in particular, neural networks have an error rate
of 5.5% and the Chow and Liu algorithm has an error rate of 4.4% [14].

5 Conclusions

We have described a methodology for feature selection, edge selection and parameter esti-
mation that can be viewed as a generalization of the Chow-Liu algorithm. Drawing on the
feature selection methods of [9, 16], our method is quite general, building an exponential
family model from the general vocabulary of features on overlapping subsets of variables.
By maintaining tractability throughout the learning process, however, we build this flexible
representation of a multivariate density while retaining many of the desirable aspects of the
Chow-Liu algorithm.

Our methodology applies equally well to feature or edge selection. In large-scale, sparse
domains in which overfitting is of particular concern, however, feature selection may be the
preferred approach, in that it provides a finer-grained search in the space of simple models
than is allowed by the edge selection approach.

Acknowledgements

We wish to acknowledge NSF grant 11S-9988642 and ONR MURI N00014-00-1-0637. The
results presented here were obtained using Kevin Murphy’s Bayes Net Matlab toolbox and
SVMTorch [3].

References
[1] H. Bodlaender, A linear-time algorithm for finding tree-decompositions of small treewidth,
Siam J. Computing, 25, 105-1317, 1996.
[2] C.K. Chow and C.N. Liu, Approximating discrete probability distributions with dependence
trees, IEEE Trans. Information Theory, 42, 393-405, 1990.
[3] R. Collobert and S. Bengio, SVMTorch: support vector machines for large-scale regression
problems, Journal of Machine Learning Research, 1, 143-160, 2001.
[4] R.G. Cowell, A.P. Dawid, S.L. Lauritzen, and D.J. Spiegelhalter, Probabilistic Networks and
Expert Systems, Springer-Verlag, New York, 1999.
[5] 1. Csiszar, I-divergence geometry of probability distributions and minimization problems, An-
nals of Probability, 3, 146-158, 1975.
[6] J.N. Darroch and D. Ratcliff, Generalized iterative scaling for log-linear models, Ann. Math.
Statist., 43, 1470-1480, 1972.
[7] D. DeCoste and B. Scholkopf, Training invariant support vector machines, Machine Learning,
46, 1-3, 2002.
[8] D. Heckerman, D. Geiger, and D.M. Chickering, Learning Bayesian networks: The combina-
tion of knowledge and statistical data, Machine Learning, 20, 197-243, 1995.
[9] S. DellaPietra, V. Della Pietra, and J. Lafferty, Inducing features of random fields, IEEE Trans.
PAMI, 19, 380-393, 1997.
[10] R.Jirousek and S. Preucil, On the effective implementation of the iterative proportional fitting
procedure, Computational Statistics and Data Analysis, 19, 177-189, 1995.
[11] U. Kjaerulff, Triangulation of graphs—algorithms giving small total state space, Technical
Report R90-09, Dept. of Math. and Comp. Sci., Aalborg Univ., Denmark, 1990.
[12] Y. Le Cun, http://www.research.att.com/~yann/exdb/mnist/index._html
[13] G. Mayraz and G. Hinton, Recognizing hand-written digits using hierarchical products of ex-
perts, Adv. NIPS 13, MIT Press, Cambridge, MA, 2001.
[14] M. Meila and M.I. Jordan, Learning with mixtures of trees, Journal of Machine Learning Re-
search, 1, 1-48, 2000.
[15] N. Srebro, Maximum likelihood bounded tree-width Markov networks, in UAI 2001.
[16] S.C. Zhu, Y.W. Wu, and D. Mumford, Minimax entropy principle and its application to texture

modeling, Neural Computation, 9, 1997.

