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Abstract

The question of whether the nervous system produces movement through
the combination of a few discrete elements has long been central to the
study of motor control. Muscle synergies, i.e. coordinated patterns of
muscle activity, have been proposed as possible building blocks. Here we
propose a model based on combinations of muscle synergies with a spe-
cific amplitude and temporal structure. Time-varying synergies provide
a realistic basis for the decomposition of the complex patterns observed
in natural behaviors. To extract time-varying synergies from simultane-
ous recording of EMG activity we developed an algorithm which extends
existing non-negative matrix factorization techniques.

1 Introduction

In order to produce movement, every vertebrate has to coordinate the large number of de-
grees of freedom in the musculoskeletal apparatus. How this coordination is accomplished
by the central nervous system is a long standing question in the study of motor control.
According to one common proposal, this task might be simplified by a modular organiza-
tion of the neural systems controlling movement [1, 2, 3, 4]. In this scheme, specific output
modules would control different but overlapping sets of degrees of freedom, thereby de-
creasing the number of variables controlled by the nervous system. By activating different
output modules simultaneously but independently, the system may achieve the flexibility
necessary to control a variety of behaviors.

Several studies have sought evidence for such a modular controller by examining the pat-
terns of muscle activity during movement, in particular looking for the presence of muscle
synergies. A muscle synergy is a functional unit coordinating the activity of a number of
muscles. The simplest model for such a unit would be the synchronous activation of a set
of muscles with a specific activity balance, i.e. a vector in the muscle activity space. Using
techniques such as the correlation between pairs of muscles, these studies have generally
failed to provide strong evidence in support of such units. However, using a new analysis
that allows for simultaneous combinations of more than one synergy, our group has recently
provided evidence in support of this basic hypothesis of the neural control of movement.



We used a non-negative matrix factorization algorithm to examine the composition of mus-
cle activation patterns in spinalized frogs [5, 6]. This algorithm, similarly to that developed
independently by others [7], extracts a small number of non-negative1 factors which can be
combined to reconstruct a set of high-dimensional data.

However, this analysis assumed that the muscle synergies consisted of a set of muscles
which were activated synchronously. In examinations of complex behaviors produced by
intact animals, it became clear that muscles within a putative synergy were often activated
asynchronously. In these cases, although the temporal delay between muscles was nonzero,
the dispersion around this delay was very small. These observations suggested that the ba-
sic units of motor production might involve not only a fixed coordination of relative muscle
activation amplitudes, but also a coordination of relative muscle activation timings. We
therefore have developed a new algorithm to factorize muscle activation patterns produced
during movement into combinations of such time-varying muscle synergies.

2 Combinations of time-varying muscle synergies

We model the output of the neural controller as a linear combination of � muscle patterns
with a specific time course in the activity of each muscle. In discrete time, we can represent
each pattern, or time-varying synergy, as a sequence of vectors ������� in muscle activity
space. The data set which we consider here consists of episodes of a given behavior, e.g. a
set of jumps in different directions and distances, or a set of walking or swimming cycles.
In a particular episode � , each synergy is scaled by an amplitude coefficient 	�
 and time-
shifted by a delay � 
 . The sequence of muscle activity for that episode is then given by:

� 
 �
����� �� � ��� 	 

� � � ������� 
 � � (1)

Fig. 1 illustrates the model with an example of the construction of a muscle pattern by
combinations of three synergies. Compared to the model based on combinations of syn-
chronous muscle synergies this model has more parameters describing each synergy ( �����
vs. � , with � muscles and � maximum number of time steps in a synergy) but less over-
all parameters. In fact, with synchronous synergies there is a combination coefficient for
each time step and each synergy, whereas with time-varying synergies there are only two
parameters ( 	�
 � and ��
 � ) for each episode and each synergy.

3 Iterative minimization of the reconstruction error

For a given set of episodes, we search for the set of � non-negative time-varying synergies��� �
�
� ���! " " � ,

� � �$# � � ��%&�(')'*' � � ���+�-,.�0/ , of maximum duration � time steps and the set
of coefficients 	 � 
 ��1-%&� and � � 
 that minimize the reconstruction error243 � � 
 2 
 3

2 
 3 �65�7� 8 ���:9 � 
 �
���;� �� � ��� 	 

� � � �
���<� 
 � � 9 3

1The non-negativity constraint arises naturally in the context of motor control from the fact that
firing rates of motoneurons, and consequently muscle activities, cannot be negative. While it is con-
ceivable that a negative contribution on a motoneuronal pool from one factor would always be can-
celled by a larger positive contribution from other factors, we chose a model based on non-negative
factors to ensure that each factor could be independently activated.
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Figure 1: An example of construction of a muscle pattern by the combinations of three
time-varying synergies. In this example, each time-varying synergy (left) is constituted by
a sequence of 50 activation levels in 5 muscles chosen as samples from Gaussian functions
with different centers, widths, and amplitudes. To construct the muscle pattern (top right,
shaded area), the activity levels of each synergy are first scaled by an amplitude coefficient
( �
�
, represented in the bottom right by the height of an horizontal bar) and shifted in time

by a delay ( � � , represented by the position of the same bar). Then, at each time step, the
scaled and shifted components (top right, broken lines) are summed together.

with � � ��� � � % for ���-% or � 1-� .

After initializing synergies and coefficients to random positive values, we minimize the
error by iterating the following steps:

1. For each episode, given the synergies
� �

and the scaling coefficients 	 
 � , find the
delays � 
 � using a nested matching procedure based on the cross-correlation of the
synergies with the data (see 3.1 below).

2. For each episode, given the synergies and the delays � 
 � , update the scaling coef-
ficients 	 
 � by gradient descent

��� 
 � �	��

��� 7 2 3
Here and below, we enforce non-negativity by setting to zero any negative value.

3. Given delays and scaling coefficients, update the synergy elements � � � � � � ��� �
by gradient descent

� � � � � �	����������� 243



3.1 Matching the synergy delays

To find the best delay of each synergy in each episode we use the following procedure:

i. Compute the sum of the scalar products between the s-th data episode and the i -th
synergy time-shifted by �

� 
 � ����� � �
�
� 
 ��� � 5 �

� ��� �<��� (2)

or scalar product cross-correlation at delay � , for all possible delays.

ii. Select the synergy and the delay with highest cross-correlation.

iii. Subtract from the data the selected synergy (after scaling and time-shifting by the
selected delay).

iv. Repeat the procedure for the remaining synergies.

4 Results

We tested the algorithm on simulated data in order to evaluate its performance and then
applied it to EMG recordings from 13 hindlimb muscles of intact bullfrogs during several
episodes of natural behaviors [8].

4.1 Simulated data

We first tested whether the algorithm could reconstruct known synergies and coefficients
from a dataset generated by those same synergies and coefficients. We used two different
types of simulated synergies. The first type was generated using a Gaussian function of
different center, width, and amplitude for each muscle. The second type consisted of syn-
ergies generated by uniformly distributed random activities. For each type, we generated
sets of three synergies involving five muscles with a duration of 15 time steps. Using these
synergies, 50 episodes of duration 30 time steps were generated by scaling each synergy�
� ����� with random coefficients 	 
 � and shifting it by random delays � 
 � .

In figure 2 the results of a run with Gaussian synergies are shown. Using as a convergence
criterion a change in � 3 of less than , %���� for 20 iterations, after 474 iterations the solution
had � 3 � % ' ���
	�� . Generating and reconstructed synergy activations are shown side by side
on the left, in gray scale. Scatter plots of generating vs. reconstructed scaling coefficients
and temporal delays are shown in the center and on the right respectively. Both synergies
and coefficients were accurately reconstructed by the algorithm.

In table 1, a summary of the results from 10 runs with Gaussian and random synergies
is presented. We used the maximum of the scalar product cross-correlation between two
normalized synergies (see eq. 2) to characterize their similarity. We compared two sets
of synergies by matching the pairs in each set with the highest similarity and computing
the mean similarity ( 
�� ) between these pairs. All the synergy sets that we reconstructed
( ������� ) had a high similarity with the generating set ( ������� ). We also compared the gen-
erating and reconstructed scaling coefficients 	.
 � using their correlation coefficient ��� , and
delays � 
 � by counting the number of delay coefficients that were reconstructed correctly
after compensating for possible lags in the synergies ( ���

8 ��� ). The match in scaling coef-
ficients and delays was in general very good. Only in a few runs with Gaussian synergies
were the data correctly reconstructed (high � 3 ) but with synergies slightly different from
the generating ones (as indicated by the lower 
 � ) and consequently not perfectly match-
ing coefficients (lower � � �"! and ���#�

8 ����$ � 8 ! ).
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Figure 2: An example of reconstruction of known synergies and coefficients from simu-
lated data. The first column ( ������� ) shows three time-varying synergies, generated from
Gaussian functions, as three matrices each representing, in gray scale, the activity of 5
muscles (rows) over 15 time steps (columns). The second column ( � ����� ) shows the three
synergies reconstructed by the algorithm: they accurately match the generating synergies
(except for a temporal shift compensated by an opposite shift in the reconstructed delays).
The third and fourth columns show scatter plots of generating vs. reconstructed scaling
coefficients and delays in 50 simulated episodes. Both sets of coefficients are accurately
reconstructed in almost all episodes.

4.2 Time-varying muscle synergies in frog’s muscle patterns

We then applied the algorithm to EMG recordings of a large set ( � � , , , ) of hindlimb
kicks, a defensive reflex that frogs use to remove noxious stimuli from the foot. Each kick
consists of a fast extension followed by a slower flexion to return the leg to a crouched
posture. The trajectory of the foot varies with the location of the stimulation on the skin
and, as a consequence, the set of kicks spans a wide range of the workspace of the frog.
Correspondingly, across different episodes the muscle activity patterns in the 13 muscles
that we recorded showed considerable amplitude and timing variations that we sought to
explain by combinations of time-varying synergies.

After rectifying and integrating the EMGs over 10 ms intervals, we performed the opti-
mization procedure with sets of � synergies, with � � ��� '*')' ��� . We chose the maximum
duration of each synergy to be 20 time steps, i.e. 200 ms, a duration larger than the duration
of a typical muscle burst observed in this behavior. We repeated the procedure 10 times for
each � .



Gaussian synergies� � 8 ��� � 3 
 � � � � ! ��� �
8 ��� $ � 8 !

max 561 0.9989 0.9996 0.9983 0.9467
median 451 0.9952 0.9990 0.9974 0.9233

min 297 0.9874 0.8338 0.2591 0.3133
Random synergies� � 8 ��� � 3 
 � � � � ! ��� �

8 ��� $ � 8 !
max 555 0.9999 1.0000 0.9996 0.9867

median 395 0.9998 1.0000 0.9990 0.9800
min 208 0.9998 1.0000 0.9984 0.9733

Table 1: Comparison between generated and reconstructed synergies and coefficients for
10 runs with Gaussian and random synergies. See text for explanation.

In figure 3 the result of the extraction of four synergies with the highest � 3 is shown. The
convergence criterion of a change in � 3 smaller than ,�% ��� for 20 iterations was reached
after 100 iterations with a final � 3 � % ' ��� � � . The synergies extracted in the other nine runs
were in general very similar to this set, as indicated by a mean similarity ( 
 � ) ranging from% ' ��� to % ' �
	 (median % ' � � ) and a correlation between scaling coefficients ranging from % ' ���
to % ' � � (median % ' � � ). In the case with the lowest similarity, only one synergy in the set
shown in figure 3 was not properly matched.

The four synergies captured the basic features of the muscle patterns observed during dif-
ferent kicks. The first synergy, recruiting all the major knee extensor muscles (VI, RA, and
VE), is highly activated in laterally directed kicks, as seen in the first kick shown in fig-
ure 3, which involved a large knee extension. The second synergy, recruiting two large hip
extensor muscles (RI and SM) and an ankle extensor muscle (GA), is highly activated in
caudally and medially directed kicks, i.e. kicks involving hip extension. The third synergy
involves a specific temporal sequencing of several muscles: BI and VE first, followed by
RI, SM, and GA, and then by AD and VI at the end. The fourth synergy has long activation
profiles in many flexor muscles, i.e. those involved in the return phase of the kick, with a
specific temporal pattern (long activation of IP; BI and SA before TA).

When this set of EMGs was reconstructed using different numbers of muscle synergies,
we found that the synergies identified using N synergies were generally preserved in the
synergies identified using N+1 synergies. For instance, the first two synergies shown in
figure 3 were seen in all sets of synergies, from � � �

to � � �
. Therefore, increasing

the number of synergies allowed the data to be reconstructed more accurately (as seen by a
higher � 3 ) but without a complete reorganization of the synergies.

5 Discussion

The algorithm that we introduced here represents a new analytical tool for the investigation
of the organization of the motor system. This algorithm is an extension of previous non-
negative matrix factorization procedures, providing a means of capturing structure in a set
of data not only in the amplitude domain but also in the temporal domain. Such temporal
structure is a natural description of motor systems where many behaviors are character-
ized by a particular temporal organization. The analysis applied to behaviors produced by
the frog, as described here, was able to capture significant physiologically relevant char-
acteristics in the patterns of muscle activations. The motor system is not unique, however,
in having structure in both amplitude and temporal domains and the techniques used here
could easily be extended to other systems.
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Figure 3: Reconstruction of rectified and integrated (10 ms) EMGs for two kicks by time-
varying synergies. Left: four extracted synergies constituted by activity levels (in gray
scale) for 20 time steps in 13 muscles: rectus internus major (RI), adductor magnus (AD),
semimembranosus (SM), ventral head of semitendinosus (ST), ilio-psoas (IP), vastus inter-
nus (VI), rectus anterior (RA), gastrocnemius (GA), tibialis anterior (TA), peroneous (PE),
biceps (BI), sartorius (SA), and vastus externus (VE) [8]. Top right: the observed EMGs
(thin line and shaded area) and their reconstruction (thick line) by combinations of the four
synergies, scaled in amplitude ( �

�
) and shifted in time ( � � ).

Our model can be naturally extended to include temporal scaling of the synergies, i.e.
allowing different durations of a synergy in different episodes. Work is in progress to
implement an algorithm similar to the one presented here to extract time-varying and time-
scalable synergies. We will also address the issue of how to identify time-varying muscle
synergies from continuous recordings of EMG patterns, without any manual segmentation
into different episodes. A possibility that we are investigating is to extend the approach
based on a sparse and overcomplete basis used by Lewicki and Sejnowski [9]. Finally,
future work will aim to the development of a probabilistic model to address the issue of the
dimensionality of the synergy set in terms of Bayesian model selection [10].
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