
Batch Value Function Approximation via
Support Vectors

Thomas G Dietterich
Department of Computet Science

Oregon State University
Corvallis, OR, 97331

tgd@cs.orst.edu

Xin W"ang
Department of Computer Science

Oregon State University
Corvallis, OR, 97331
wangxi@cs. orst. edu

Abstract

We present three ways of combining linear programming with the
kernel trick to find value function approximations for reinforcement
learning. One formulation is based on SVM regression; the second
is based on the Bellman equation; and the third seeks only to ensure
that good moves have an advantage over bad moves. All formu­
lations attempt to minimize the number of support vectors while
fitting the data. Experiments in a difficult, synthetic maze problem
show that all three formulations give excellent performance, but the
advantage formulation is much easier to train. Unlike policy gradi­
ent methods, the kernel methods described here can easily 'adjust
the complexity of the function approximator to fit the complexity
of the value function.

1 Introduction

Virtually all existing work on value function approximation and policy-gradient
methods starts with a parameterized formula for the value function or policy and
then seeks to find the best policy that can be represented in that parameterized form.
This can give rise to very difficult search problems for which the Bellman equation
is of little or no use. In this paper, we take a different approach: rather than fixing
the form of the function approximator and searching for a representable policy, we
instead identify a good policy and then search for a function approximator that
can represent it. Our approach exploits the ability of mathematical programming
to represent a variety of constraints including those that derive from supervised
learning, from advantage learning (Baird, 1993), and from the Bellman equation. By
combining the kernel trick with mathematical programming, we obtain a function
approximator that seeks to find the smallest number of support vectors sufficient to
represent the desired policy. This side-steps the difficult problem of searching for
a good policy among those policies representable by a fixed function approximator.
Our method applies to any episodic MDP, but it works best in domains-such as
resource-constrained scheduling and other combinatorial optimization problems­
that are discrete and deterministic.

2 Preliminaries

There are two distinct reasons for studying value function approximation methods.
The primary reason is to be able to generalize from some set of training experiences
to produce a policy that can be applied in new states that were not visited during
training. For example, in Tesauro's (1995) work on backgammon, even after training
on 200,000 games, the TD-gammon system needed to be able to generalize to new
board positions that it had not previously visited. Similarly, in Zhang's (1995) work
on space shuttle scheduling, each individual scheduling problem visits only a finite
number of states, but the goal is to learn from a series of "training" problems and
generalize to new states that arise in "test" problems. Similar MDPs have been
studied by Moll, Barto, Perkins & Sutton (1999).

The second reason to study function approximation is to support learning in con­
tinuous state spaces. Consider a robot with sensors that return continuous values.
Even during training, it is unlikely that the same vector of sensor readings will ever
be experienced more thaIl once. Hence, generalization is critical during the learning
process as well as after learning.

The methods described in this paper address only the first of these reason. Specif­
ically, we study the problem of generalizing from a partial policy to construct a
complete policy for a Markov Decision Problem (MDP). Formally, consider a dis­
crete time MDP M with probability transition function P(s/ls, a) (probability that
state Sl will result from executing action a in state s) and expected reward function
R(s/ls, a) (expected reward received from executing action a in state s and entering
state Sl). We will assume that, as in backgammon and space shuttle scheduling,
P(s/ls, a) and R(s/ls, a) are known and available to the agent, but that the state
space is so large that it prevents methods such as value iteration or policy itera­
tion from being applied. Let L be a set of "training" states for which we have an
approximation V(s) to the optimal value function V*(s), s E L. In some cases, we
will also assume the availability of a policy 'ff consistent with V(s). The goal is to
construct a parameterized approximation yes; 8) that can be applied to all states
in M to yield a good policy if via one-step lookahead search. In the experiments
reported below, the set L contains states that lie along trajectories from a small set
of "training" starting states So to terminal states. A successful learning method will
be able to generalize to give a good policy for new starting states not in So. This
was the situation that arose in space shuttle scheduling, where the set L contained
states that were visited while solving "training" problems and the learned value
function was applied to solve "test" problems.

To represent states for function approximation, let X (s) denote a vector of features
describing the state s. Let K(X1 ,X2) be a kernel function (generalized inner prod­
uct) of the two feature vectors Xl and X 2 • In our experiments, we have employed
the gaussian kernel: K(X1,X2;U) == exp(-IIX1 - X 2 11

2 /(
2

) with parameter u.

3 Three LP Formulations of Function Approximation

We now introduce three linear programming formulations of the function approxi­
mationproblem. We first express each of these formulations in terms of a generic
fitted function approximator V. Then, we implement V(s) as the dot product of
a weight vector W with the feature vector X (s): V(s) == W . X (s). Finally, we
apply the "kernel trick" by first rewriting W as a weighted sum of the training
points Sj E L, W == ~j ajX(sj), (aj 2: 0), and then replacing all dot products
between data points by invocations of the kernel function K. We assume L con-

tains all states along the best paths from So to terminal states and also all states
that can be reached from these paths in one step and that have been visited during
exploration (so that V is known). In all three formulations we have employed linear
objective functions, but quadratic objectives like those employed in standard sup­
port vector machines could be used instead. All slack variables in these formulations
are constrained- to be non-negative.

Formulation 1: Supervised Learning. The first formulation treats the value
function approximation problem as a supervised learning problem and applies the
standard c-insensitive loss function (Vapnik, 2000) to fit the function approximator.

minimize L [u(s) + v(s)]
S

subject to V(s) + u(s) 2:: V(s) - c; V(s) - v(s) :::; V(s) + c "Is E L

In this formulation, u(s) and v(s) are slack variables that are non-zero only if V(s)
has an absolute deviation from V(s) of more than c. The objective function seeks to
minimize these absolute deviation errors. A key idea of support vector methods is
to combine this objective function with a penalty on the norm of the weight vector.
We can write this as

minimize IIWlll + C L[u(s) + v(s)]
S

subject to W· X(s) + u(s) 2:: V(s) - c; W· X(s) - v(s) :::; V(s) + c "Is E L

The parameter C expresses the tradeoff between fitting the data (by driving the
slack variables to zero) and minimizing the norm of the weight vector. We have
chosen to minimize the I-norm of the weight vector (11Wlll == Ei IWi!), because this
is easy to implement via linear programming. Of course, if the squared Euclidean
norm of W is preferred, then quadratic programming methods could be applied to
minimize this.

Next, we introduce the assumption that W can be written as a weighted sum of the
data points themselves. Substituting this into the constraint equations, we obtain

minimize L aj + C L[u(s) + v(s)]
j 8

subject to E j ajX(sj) . X(s) + u(s) ~ V(s) - c
Ej ajX(sj) . X(s) - v(s) :::; V(s) + c

"Is E L
"Is E L

Finally, we can apply the kernel trick by replacing each dot product by a call to a
kernel function:

minimize Laj + CL[u(s) + v(s)]
j s

subject to Ej ajK(X(sj),X(s)) + u(s) 2:: V(s) - c
E j ajK(X(sj), X(s)) - v(s) :::; V(s) + c

"Is E L
"Is E L

Formulation 2: Bellman Learning. The second formulation introduces con­
straints from the Bellman equation V(s) == maxa ESI P(s'ls, a)[R(s'ls, a) + V(s')].
The standard approach to solving MDPs via linear programming is the following.
For each state s and action a,

minimize L u(s; a)
s,a

subject to V(s) == u(s,a) + LP(s'ls,a)[R(s'ls,a) + V(s')]
s'

The idea is' that for the optimal action a* in state s, the slack variable u(s, a*)
can be driven to zero, while for non-optimal actions a_, the slack u(s, a_) will
remain non-zero. Hence, the minimization of the slack variables implements the
maximization operation of the Bellman equation.

We attempted to apply this formulation with function approximation, but the errors
introduced by the approximation make the linear program infeasible, because V(s)
must sometimes be less than the backed-up value Ls' P(s'ls, a)[R(s'ls, a) + V(s')].
This led us to the following formulation in which we exploit the approximate value
function 11 to provide "advice" to the LP optimizer about which constraints should
be tight and which ones should be loose. Consider a state s in L. We can group
the actions available in s into three groups: (a) the "optimal" action a* == 1f(s)
chosen by the approximate policy it, (b) other actions that are tied for optimum
(denoted by ao), and (c) actions that are sub-optimal (denoted by a_). We have
three different constraint equations, one for each type of action:

minimize L[u(s, a*) + v(s, a*)] + LY(s, ao) + L z(s, a_)
s s,ao s,a_

subject to 17(s) + u(s, a*) - v(s, a*) == L P(s'ls, a*)[R(s'ls, a*) + V(s')]
s'

17(8) + y(s, ao) ~ L P(s'ls, ao)[R(s'ls, ao) + V(s')]
s'

17(s) + z(s, a_) ~ L P(s'ls, a_)[R(s'ls, a_) + V(s')] + €

s'

The first constraint requires V(s) to be approximately equal to the backed-up value
of the chosen optimal action a*. The second constraint requires V(s) to be at least
as large as the backed-up value of any alternative optimal actions ao. If V(s) is
too small, it will be penalized, because the slack variable y(s, ao) will be non-zero.
But there is no penalty if V(s) is too large. The main effect of this constraint is
to drive the value of V(s') downward as necessary to satisfy the first constraint on
a*. Finally, the third constraint requires that V(s) be at least € larger than the
backed-up value of all inferior actions a_. If these constraints can be satisfied with
all slack variables u, v, y, and z set to zero, then V satisfies the Bellman equation.

After applying the kernel trick and introducing the regularization objective, we
obtain the following Bellman formulation:

minimize ~ aj + C (,~_ u(s, a*) + v(s, a*) + y(s, ao) + z(s, a_))

subject to ~a.j [K(X(Sj),X(S)) - LP(s'ls,a*)K(X(Sj),X(S'))] +
J s'

u(s, a*) - v(s, a*) == L P(s'ls, a*)R(s'ls, a*)
8'

~aj [K(X(Sj),X(S)) - LP(s'ls,ao)K(X(Sj),X(S'))] +y(s,ao)
J ~

~ LP(s'ls,ao)R(s'ls,ao)
s'

~O:j [K(X(Sj),X(S)) - LP(S'IS,a_)K(X(Sj),X(S'))] +z(s,a_)
3 ~

~ LP(s'ls,a_)R(s'ls,a_) +£
8/

Formulation 3: Advantage Learning. The third formulation focuses on the
minimal constraints that must be satisfied to ensure that the greedy policy com­
puted from V will be identical to the greedy policy computed from V (cf. Utgoff
& Saxena, 1987). Specifically, we require that the backed up value of the optimal
action a* be greater than the backed up values of all other actions a.

minimize L u(s,a*,a)
s,a*,a

subject to L P(s'ls, a*)[R(s'ls, a*) + V(s')] + u(s, a*, a)
8/

~ LP(s!ls,a)[R(s!ls,a) + V(s/)] +£
s/

There is one constraint and one slack variable u(s, a*, a) for every action executable
in state s except for the chosen optimal action a* = i"(s). The backed-up value of
a* must have an advantage of at least € over any other action a, even other actions
that, according to V, are just as good as a*. After applying the kernel trick and
incorporating the complexity penalty, this becomes

minimize Laj+C L u(s,a*,a)
j s,a*,a

subject to Laj L[P(s'ls,a*) -P(s'ls,a)]K(X(sj),X(s')) +u(s,a*,a) ~
j s/

L P(s'ls, a)R(s'ls, a) - L P(s'ls, a*)R(s'ls, a*) + £

s/ s/

Of course each of these formulations can easily be modified to incorporate a discount
factor for discounted cumulative reward.

4 Experimental Results

To compare these three formulations, we generated a set of 10 random maze prob­
lems as follows. In a 100 by 100 maze, the agent starts in a randomly-chosen square
in the left column, (0, y). Three actions are available in every state, east, northeast,
and southeast, which deterministically move the agent one square in the indicated
direction. The maze is filled with 3000 rewards (each of value -5) generated ran­
domly from a mixture of a uniform distribution (with probability 0.20) and five 2-D
gaussians (each with probability 0.16) centered at (80,20), (80,60), (40,20), (40,80),
and (20,50) with variance 10 in each dimension. Multiple rewards generated for
a single state are accumulated. In addition, in column 99, terminal rewards are
generated according to a distribution that varies from -5 to +15 with minima at
(99,0), (99,40), and (99,80) and maxima at (99,20) and (99,60).

Figure 1 shows one of the generated mazes. These maze problems are surpris­
ingly hard because unlike "traditional" mazes, they contain no walls. In traditional
n;tazes, the walls tend to guide the agent to the goal states by reducing what would
be a 2-D random walk to a random walk of lower dimension (e.g., 1-D along narrow
halls).

10 20 30 40 50 60 70 80 90 100

100
Rewards

90 -5 0

-10 +

80 -15)(

-20 3IE

70

CZl
CZl

(1) 60 ~
~ ViVi
bJJ 50 ~

.s ~

~
.§

Vi 40 (1)

~

30

20

10

Figure 1: Example randomly-generated maze. Agent enters at left edge and exits
at right edge.

We applied the three LP formulations in an incremental-batch method as shown
in Table 1. The LPs were solved using the CPLEX package from ILOG. The V
giving the best performance on the starting states in So over the 20 iterations
was saved and evaluated over all 100 possible starting states to obtain a measure of
generalization. The values of C and a were determined by evaluating generalization
on a holdout set of 3 start states: (0,30), (0,50), and (0,70). Experimentation showed
that C = 100,000 worked well for all three methods. We tuned 0-

2 separately for
each problem using values of 5, 10, 20, 40, 60, 80, 120, and 160; larger values
were preferred in case of ties, since they give better generalization. The results are
summarized in Figure 2.

The figure shows that the three methods give essentially identical performance, and
that after 3 examples, all three methods have a regret per start state of about
2 units, which is less than the cost of a single -5 penalty. However, the three
formulations differ in their ease of training and in the information they require.
Table 2 compares training performance in terms of (a) the CPU time required for
training, (b) the number of support vectors constructed, (c) the number of states in
which V prefers a tied-optimal action over the action chosen by n-, (d) the number
of states in which V prefers an inferior action, and (e) the number of iterations
performed after the best-performing iteration on the training set. A high score
on this last measure indicates that the learning algorithm is not converging well,
even though it may momentarily attain a good fit to the data. By virtually every
measure, the advantage formulation scores better. It requires much less CPU time
to train, finds substantially fewer support vectors, finds function approximators that
give better fit to .the data, and tends to converge better. In addition, the advantage·

Table 1:__ Incremental Batch Reinforcement Learning

Repeat 20 times:
For each start state So E 80 do

Generate 16 f-greedy trajectories using V
Record all transitions and rewards to build MDP model if

Solve M via value "iteration to obtain V and 7r
L=0
For each start state 80 E 80 do

Generate trajectory according to -IT
Add to L all states visited along this trajectory

Apply LP method to L, V, and 7r to find new V
Perform Monte Carlo rollouts using greedy policy for V to evaluate each possible start state
Report total value of all start states.

Table 2: Measures of the quality of the training process (average over 10 MDPs)

180 1= 1 1801 = 2
CPU #SV #tie #bad #iter CPU #SV #tie #bad #iter

Sup 37.5 29.5 22.4 0.7 5.6 190.7 54.3 49.8 1.9 7.3
Bel 30.4 40.9 18.8 0.9 5.9 92.7 51.1 47.9 0.4 8.2
Adv 11.7 17.2 19.4 0.2 1.6 38.4 39.6 29.1 1.4 2.0

180 1= 3 1801 =4
CPU #SV #tie #bad #iter CPU #SV #tie #bad #iter

Sup 433.2 105.5 70.5 3.0 10.5 789.1 117.2 90.5 3.3 9.6
Bel 208.0 82.4 62.0 2.2 3.3 379.1 145.7 75.2 1.8 7.3
Adv 74.5 58.6 46.7 0.6 4.0 122.4 74.0 51.9 3.2 2.8

and Bellman formulations do not require the value of V, but only -fr. This makes
them suitable for learning to imitate a human-supplied policy.

5 Conclusions

This paper has presented three formulations. of batch value function approximation
by exploiting the power of linear programming to express a variety of constraints
and borrowing the kernel trick from support vector machines. All three formulations
were able to learn and generalize well on difficult synthetic maze problems. The
advantage formulation is easier and more reliable to train, probably because it places
fewer constraints on the value function approximation. Hence, we are now applying
the advantage formulation to combinatorial optimization problems in scheduling
and protein structure determination~

Acknowledgments

The authors gratefully acknowledge the support of AFOSR under contract F49620­
98-1-0375, and the NSF under grants IRl-9626584, I1S-0083292, 1TR-5710001197,
and E1A-9818414. We thank Valentina Zubek and Adam Ashenfelter for their
careful reading of the paper.

1200

~ 1000
u
~
0
0.

~.s 800
a
0

B
'"d
Q) 600a
a
0
~
...... 400Q.)
l-I
b1)
Q)
l-I

~

t(5
200~

0
0 2 3 4 5

Number of Starting States

Figure 2: Comparison of the total regret (optimal total reward - attained total
reward) summed over all 100 starting states for the three formulations as a function
of the number of start states in So. The three error bars represent the performance
of the supervised, Bellman, and advantage formulations (left-to-right). The bars
plot the 25th, 50th, and 75th percentiles computed over 10 randomly generated
mazes. Average optimal total reward on these problems is 1306. The random
policy receives a total reward of -14,475.

References

Baird, L. C. (1993). Advantage updating. Tech. rep. 93-1146, Wright-Patterson
AFB.

Moll, R., Barto, A. G., Perkins, T. J., & Sutton, R. S. (1999). Learning instance­
independent value functions to enhance local search. NIPS-II, 1017-1023.

Tesauro, G. (1995). Temporal difference learning and TD-Gammon. CACM, 28(3),
58-68.

Utgoff, P. E., & Saxena, S. (1987). Learning a preference predicate. In ICML-87,
115-121.

Vapnik, V. (2000). The Nature of Statistical Learning Theory, 2nd Ed. Springer.

Zhang, W., & Dietterich, T. G. (1995). A reinforcement learning approach to job­
shop scheduling. In IJCAI95, 1114-1120.

