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Abstract

Principal Component Analysis and Fisher Linear Discriminant
methods have demonstrated their success in face detection, recog­
nition, and tracking. The representation in these subspace methods
is based on second order statistics of the image set, and does not
address higher order statistical dependencies such as the relation­
ships among three or more pixels. Recently Higher Order Statistics
and Independent Component Analysis (ICA) have been used as in­
formative low dimensional representations for visual recognition.
In this paper, we investigate the use of Kernel Principal Compo­
nent Analysis and Kernel Fisher Linear Discriminant for learning
low dimensional representations for face recognition, which we call
Kernel Eigenface and Kernel Fisherface methods. While Eigenface
and Fisherface methods aim to find projection directions based on
the second order correlation of samples, Kernel Eigenface and Ker­
nel Fisherface methods provide generalizations which take higher
order correlations into account. We compare the performance of
kernel methods with Eigenface, Fisherface and ICA-based meth­
ods for face recognition with variation in pose, scale, lighting and
expression. Experimental results show that kernel methods pro­
vide better representations and achieve lower error rates for face
recognition.

1 Motivation and Approach

Subspace methods have been applied successfully in numerous visual recognition
tasks such as face localization, face recognition, 3D object recognition, and tracking.
In particular, Principal Component Analysis (PCA) [20] [13] ,and Fisher Linear Dis­
criminant (FLD) methods [6] have been applied to face recognition with impressive
results. While PCA aims to extract a subspace in which the variance is maximized
(or the reconstruction error is minimized), some unwanted variations (due to light­
ing, facial expressions, viewing points, etc.) may be retained (See [8] for examples).
It has been observed that in face recognition the variations between the images of
the same face due to illumination and viewing direction are almost always larger
than image variations due to the changes in face identity [1]. Therefore, while the
PCA projections are optimal in a correlation sense (or for reconstruction" from a
low dimensional subspace), these eigenvectors or bases may be suboptimal from the



classification viewpoint.

Representations of Eigenface [20] (based on PCA) and Fisherface [6] (based on FLD)
methods encode the pattern information based on the second order dependencies,
i.e., pixelwise covariance among the pixels, and are insensitive to the dependencies
among multiple (more than two) pixels in the samples. Higher order dependencies
in an image include nonlinear relations among the pixel intensity values, such as
the relationships among three or more pixels in an edge or a curve, which can cap­
ture important information for recognition. Several researchers have conjectured
that higher order statistics may be crucial to better represent complex patterns.
Recently, Higher Order Statistics (HOS) have been applied to visual learning prob­
lems. Rajagopalan et ale use HOS of the images of a target object to get a better
approximation of an unknown distribution. Experiments on face detection [16] and
vehicle detection [15] show comparable, if no better, results than other PCA-based
methods.

The concept of Independent Component Analysis (ICA) maximizes the degree
of statistical independence of output variables using contrast functions such as
Kullback-Leibler divergence, negentropy, and cumulants [9] [10]. A neural net­
work algorithm to carry out ICA was proposed by Bell and Sejnowski [7], and was
applied to face recognition [3]. Although the idea of computing higher order mo­
ments in the ICA-based face recognition method is attractive, the assumption that
the face images comprise of a set of independent basis images (or factorial codes)
is not intuitively clear. In [3] Bartlett et ale showed that ICA representation out­
perform PCA representation in face recognition using a subset of frontal FERET
face images. However, Moghaddam recently showed that ICA representation does
not provide significant advantage over PCA [12]. The experimental results suggest
that seeking non-Gaussian and independent components may not necessarily yield
better representation for face recognition.

In [18], Sch6lkopf et ale extended the conventional PCA to Kernel Principal Com­
ponent Analysis (KPCA). Empirical results on digit recognition using MNIST data
set and object recognition using a database of rendered chair images showed that
Kernel PCA is able to extract nonlinear features and thus provided better recog­
nition results. Recently Baudat and Anouar, Roth and Steinhage, and Mika et
ale applied kernel tricks to FLD and proposed Kernel Fisher Linear Discriminant
(KFLD) method [11] [17] [5]. Their experiments showed that KFLD is able to ex­
tract the most discriminant features in the feature space, which is equivalent to
extracting the most discriminant nonlinear features in the original input space.

In this paper we seek a method that not only extracts higher order statistics of
samples as features, but also maximizes the class separation when we project these
features to a lower dimensional space for efficient recognition. Since much of the
important information may be contained in the high order dependences among
the pixels of a: face image, we investigate the use of Kernel PCA and Kernel FLD
for face recognition, which we call Kernel Eigenface and Kernel Fisherface methods,
and compare their performance against the standard Eigenface, Fisherface and ICA
methods. In the meanwhile, we explain why kernel methods are suitable for visual
recognition tasks such as face recognition.

2 Kernel Principal Component Analysis

Given a set of m centered (zero mean, unit variance) samples Xk, Xk ==
[Xkl, ... ,Xkn]T ERn, PCA aims to find the projection directions that maximize
the variance, C, which is equivalent to finding the eigenvalues from the covariance



matrix
AW=CW (1)

for eigenvalues A ~ 0 and eigenvectors W E Rn. In Kernel PCA, each vector x is
projected from the input space, Rn, to a high dimensional feature space, Rf, by a
nonlinear mapping function: <t> : Rn -+ Rf, f ~ n. Note that the dimensionality
of the feature space can be arbitrarily large. In Rf, the corresponding eigenvalue
problem is

"AW4> = C4>w4> (2)

where C4> is a covariance matrix. All solutions weI> with A =I- 0 lie in the span of
<t> (x1), ... , <t> (Xm ), and there exist coefficients ai such that

m

w4> = E ai<t>(xi)
i=l

Denoting an m x m matrix K by

K·· - k(x· x·) - <t>(x·)· <t>(x·)~1 - ~'1 - ~ 1

, the Kernel PCA problem becomes

mAKa =K2 a

mAa =Ka

(3)

(4)

(5)

(6)

where a denotes a column vector with entries aI, ... , am. The above derivations
assume that all the projected samples <t>(x) are centered in Rf. See [18] for a ~ethod
to center the vectors <t>(x) in Rf.

Note that conventional PCA is a special case of Kernel PCA with polynomial kernel
of first order. In other words, Kernel PCA is a generalization of conventional PCA
since different kernels can be utilized for different nonlinear projections.

We can now project the vectors in Rf to a lower dimensional space spanned by the
eigenvectors weI>, Let x be a test sample whose projection is <t>(x) in Rf, then the
projection of <t>(x) onto the eigenvectors weI> is the nonlinear principal components
corresponding to <t>:

m m

w4> . <t>(x) = E ai (<t> (Xi) . <t>(x)) = E aik(xi, x)
i=l i=l

(7)

In other words, we can extract the first q (1 ~ q ~ m) nonlinear principal com­
ponents (Le., eigenvectors w4» using the kernel function without the expensive
operation that explicitly projects the samples to a high dimensional space Rf" The
first q components correspond to the first q non-increasing eigenvalues of (6). For
face recognition where each x encodes a face image, we call the extracted nonlinear
principal components Kernel Eigenfaces.

3 Kernel Fisher Linear Discriminant

Similar to the derivations in Kernel PCA, we assume the projected samples <t>(x)
are centered in Rf (See [18] for a method to center the vectors <t>(x) in Rf), we
formulate the equations in a way that use dot products for FLD only. Denoting the
within-class and between-class scatter matrices by S~ and SiJ, and applying FLD
in kernel space, we need to find eigenvalues A and eigenvectors weI> of

AS~WeI> = siJweI> (8)



(9)

, which can be obtained by

<P I(W<P)TS~W<P I [<P <P
WOPT = argw;x I(Wq,)TS~Wq,1 = W l W 2 ... w;.]

where {w[ Ii == 1, 2, ... ,m} is the set of generalized eigenvectors corresponding to
the m largest generalized eigenvalues {Ai Ii == 1,2, ... ,m}.

For given classes t and u and their samples, we define the kernel function by

Let K be a m x m matrix defined by the elements (Ktu)~1;:::,cc, where K tu is a
matrix composed of dot products in the feature space Rf, Le.,

K == (K )=l, ,c where K == (k )r=l, ,lttu u=l, ,c tu rs s=l, ,I'U (11)

Note K tu is a It x Iu matrix, and K is a m x m symmetric matrix. We also define
a matrix Z:

(12)

where (Zt) is a It x It matrix with terms all equal to ~, Le., Z is a m x m block
diagonal matrix. The between-class and within-class scatter matrices in a high
dimensional feature space Rf are defined as

c

siJ == L liJ.ti (p/f)T
i=l

C Ii

S~ == L L ep(Xij )~(Xij)T
i=l j=l

(13)

(14)

where pi is the mean of class i in Rf, Ii is the number of samples belonging to class
i. From the theory of reproducing kernels, any solution w<P E Rf must lie in the
span of all training samples in Rf, Le.,

c Ip

w<P == L L cy'pqep(xpq )

p=lq=l

It follows that we can get the solution for (15) by solving:

AKKa==KZKa

Consequently, we can write (9) as

<P I(WifJ)T sifJwifJl
WOPT == argmaxwifJ I(WifJ)TS!WifJ I

laKZKal== argmaxw«p laKKal

== [wi ... w~]

(15)

(16)

(17)

We can project ~(x) to a lower dimensional space spanned by the eigenvectors w<P

in a way similar to Kernel PCA (See Section 2). Adopting the same technique in
the Fisherface method (which avoids singularity problems in computing W6PT) for
face recognition [6], we call the extracted eigenvectors in (17) Kernel Fisherfaces.



4 Experiments

We test both kernel methods against standard rCA, Eigenface, and Fisherface meth­
ods using the publicly available AT&T and Yale databases. The face images in
these databases have several unique characteristics. While the images in the AT&T
database contain the facial contours and vary in pose as well scale, the face images
in the Yale database have been cropped and aligned. The face images in the AT&T
database were taken under well controlled lighting conditions whereas the images
in the Yale database were acquired under varying lighting conditions. We use the
first database as a baseline study and then use the second one to evaluate face
recognition methods under varying lighting conditions.

4.1 Variation in Pose and Scale

The AT&T (formerly Olivetti) database contains 400 images of 40 subjects. To
.reduce computational complexity, each face image is downsampled to 23 x 28 pix­
els. We represent each image by a raster scan vector of the intensity values, .and
then normalize them to be zero-mean vectors. The mean and standard deviation
of Kurtosis of the face images are 2.08 and 0.41, respectively (the Kurtosis of a
Gaussian distribution is 3). Figure 1 shows images of two subjects. In contrast to
images of the Yale database, the images include the facial contours, and variation
in pose as well as scale. However, the lighting conditions remain constant.

Fig~re 1: Face images in the AT&T database (Left) and the Yale database (Right).

The experiments are performed using the "leave-one-out" strategy: To classify an
image of person, that image is removed from the training set of (m - 1) images and
the projection matrix is computed. All the m images in the training set are projected
to a reduced space using the computed projection matrix w or weI> and recognition
is performed based on a nearest neighbor classifier. The number of principal compo­
nents or independent components are empirically determined to achieve the lowest
error rate by each method. Figure 2 shows the experimental results. Among all the
methods, the Kernel Fisherface method with Gaussian kernel and second degree
polynomial kernel achieve the lowest error rate. Furthermore, the kernel methods
perform better than standard rCA, Eigenface and Fisherface methods. Though our
experiments using rCA seem to contradict to the good empirical results reported in
[3] [4] [2]' a close look at the data sets reveals a significant difference in pose and
scale variation of the face images in the AT&T database, whereas a subset of frontal
FERET face images with change of expression was used in [3] [2]. Furthermore, the
comparative study on classification with respect to PCA in [4] (pp. 819, Table 1)
and the errors made by two rCA algorithms in [2] (pp. 50, Figure 2.18) seem to
suggest that lCA methods do not have clear advantage over other approaches in
recognizing faces with pose and scale variation.

4.2 Variation in Lighting and Expression

The Yale database contains 165 images of 11 subjects that includes variation in
both facial expression and lighting. For computational efficiency, each image has
been downsampled to 29 x 41 pixels. Likewise, each face image is represented by a



Method

I rCA
Eigenface 30 2.75 (11/400)
Fisherface 14 1.50 (6/400)

Kernel Eigenface, d==2 50 2.50 (10/400)
Kernel Eigenface, d==3 50 2.00 (8/400)
Kernel Fisherface (P) 14 1.25 (5/400)
Kernel Fisherface (G) 14 1.25 (5/400)

Figure 2: Experimental results on AT&T database.

centered vector of normalized intensity values. The mean and standard deviation
of Kurtosis of the face images are 2.68 and 1.49, respectively. Figure 1 shows 22
closely cropped images of two subjects which include internal facial structures such
as the eyebrow, eyes, nose, mouth and chin, but do not contain the facial contours.

Using the same leave-one-out strategy, we experiment with the number of princi­
pal components and independent components to achieve the lowest error rates for
Eigenface and Kernel Eigenface methods. For Fisherface and Kernel Fisherface
methods, we project all the samples onto a subspace spanned by the c - 1 largest
eigenvectors. The experimental results are shown in Figure 3. Both kernel methods
perform better than standard ICA, Eigenface and Fisherface methods. Notice that
the improvement by the kernel methods are rather significant (more than 10%). No­
tice also that kernel methods consistently perform better than conventional methods
for both databases. The performance achieved by the ICA method indicates that
face representation using independent sources is not effective when the images are
taken under varying lighting conditions.

Method

Eigenface 30 28.48 (47/165)
Fisherface 14 8.48 (14/165)

Kernel Eigenface, d==2 80 27.27 (45/165)
Kernel Eigenface, d==3 60 24.24 (40/165)
Kernel Fisherface (P) 14 6.67 (11/165)
Kernel Fisherface (G) 14 6.06 (10/165)
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Figure 3: Experimental results on Yale database.

Figure 4 shows the training samples of the Yale database projected onto the first two
eigenvectors extracted by the Kernel Eigenface and Kernel Fisherface methods. The
projected samples of different classes are smeared by the Kernel Eigenface method
whereas the samples projected by the Kernel Fisherface are separated quite welL
In fact, the samples belonging to the same class are projected to the same position
by the largest two eigenvectors. This example provides an explanation to the good
results achieved by the Kernel Fisherface method.

The experimental results show that Kernel Eigenface and Fisherface methods are
able to extract nonlinear features and achieve lower error rate. Instead of using a
nearest neighbor classifier, the performance can potentially be improved by other
classifiers (e.g., k-nearest neighbor and perceptron). Another potential improvement



is to use all the extracted nonlinear components as features (Le., without projecting
to a lower dimensional space) and use a linear Support Vector Machine (SVM)
to construct a decision surface. Such a two-stage approach is, in spirit, similar
to nonlinear SVMs in which the samples are first projected to a high dimensional
feature space where a hyperplane with largest hyperplane is constructed. In fact,
one important factor of the recent success in SVM applications for visual recognition
is due to the use of kernel methods.

° class 1 °
r1-o+. + : ~::::~ I- , ~ : , , ·,··· .. ···1 ~

1- .......... :· ..~...... ·~~:-~"'-e>"0~O·"'....···:-·-¥.-(I·· .. · .. ;······O·.·· .. ; .... ······-:·· ..........:.. ·· ...... ·1 * c1ass4 0

° ~ ~:::: ~ 1- , ;. : : ; ·, .. ·· 1 y
° ~ ° V class? '-'1- :...§it'CIlIl''''''~IX'';:) : ; :.'" :.u··.. · ;.,,· .. · .. · 1 A class8 0 <l

1iiI=-*$*_~" <l class9 I- ; ;: : ~ : · ·;· · .. 1 t>

1- :* : : ; : : ; ·.. 1 E~i:~~H ~ ~° class13 1- , , ." 1> , , ·' .. ·· 1 * 5

~ -21- : : ; : : : ; ~~~~::~::~~~ ~ 01- , : -: :.° * , , --=.,,,0.:- -1

~ ~ * ! 0

* *
'*

o 2 4 :0.08 -0.06 -0.04 -0.02 0.02 0.04 0.)6 O.DB

(a) Kernel Eigenface method. (b) Kernel Fisherface method.

Figure 4: Samples projected by Kernel PCA and Kernel Fisher methods.

5 Discussion and Conclusion

The representation in the conventional Eigenface and Fisherface approaches is based
on second order statistics of the image set, Le., covariance matrix, and does not use
high order statistical dependencies such as the relationships among three or more
pixels. For face recognition, much of the important information may be contained
in the high order statistical relationships among the pixels. Using the kernel tricks
that are often used in SVMs, we extend the conventional methods to kernel space
where we can extract nonlinear features among three or more pixels. We have in­
vestigated Kernel Eigenface and Kernel Fisherface methods, and demonstrate that
they provide a more effective representation for face recognition. Compared to
other techniques for nonlinear feature extraction, kernel methods have the advan­
tages that they do not require nonlinear optimization, but only the solution of an
eigenvalue problem. Experimental results on two benchmark databases show that
Kernel Eigenface and Kernel Fisherface methods achieve lower error rates than the
ICA, Eigenface and Fisherface approaches in face recognition. The performance
achieved by the ICA method also indicates that face representation using indepen­
dent basis images is not effective when the images contain pose, scale or lighting
variation. Our future work will focus on analyzing face recognition methods us­
ing other kernel methods in high dimensional space. We plan to investigate and
compare the performance of other face recognition methods [14] [12] [19].
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