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1 Introduction

The problem of searching for information in networks like the World Wide Web can
be approached in a variety of ways, ranging from centralized indexing schemes to
decentralized mechanisms that navigate the underlying network without knowledge
of its global structure. The decentralized approach appears in a variety of settings:
in the behavior of users browsing the Web by following hyperlinks; in the design of
focused crawlers [4, 5, 8] and other agents that explore the Web’s links to gather
information; and in the search protocols underlying decentralized peer-to-peer sys-
tems such as Gnutella [10], Freenet [7], and recent research prototypes [21, 22, 23],
through which users can share resources without a central server.

In recent work, we have been investigating the problem of decentralized search
in large information networks [14, 15]. Our initial motivation was an experiment
that dealt directly with the search problem in a decidedly pre-Internet context:
Stanley Milgram’s famous study of the small-world phenomenon [16, 17]. Milgram
was seeking to determine whether most pairs of people in society were linked by
short chains of acquaintances, and for this purpose he recruited individuals to try
forwarding a letter to a designated “target” through people they knew on a first-
name basis. The starting individuals were given basic information about the target
— his name, address, occupation, and a few other personal details — and had to
choose a single acquaintance to send the letter to, with goal of reaching the target
as quickly as possible; subsequent recipients followed the same procedure, and the
chain closed in on its destination. Of the chains that completed, the median number
of steps required was six — a result that has since entered popular culture as the
“six degrees of separation” principle [11].

Milgram’s experiment contains two striking discoveries — that short chains are
pervasive, and that people are able to find them. This latter point is concerned
precisely with a type of decentralized navigation in a social network, consisting of
people as nodes and links joining pairs of people who know each other. From an
algorithmic perspective, it is an interesting question to understand the structure
of networks in which this phenomenon emerges — in which message-passing with
purely local information can be efficient.

Networks that Support Efficient Search. A model of a “navigable” network
requires a few basic features. It should contain short paths among all (or most)
pairs of nodes. To be non-trivial, its structure should be partially known and



partially unknown to its constituent nodes; in this way, information about the known
parts can be used to construct paths that make use of the unknown parts as well.
This is clearly what was taking place in Milgram’s experiments: participants, using
the information available to them, were estimating which of their acquaintances
would lead to the shortest path through the full social network. Guided by these
observations, we turned to the work of Watts and Strogatz [25], which proposes a
model of “small-world networks” that very concisely incorporates these features. A
simple variant of their basic model can be described as follows. One starts with
a p-dimensional lattice, in which nodes are joined only to their nearest neighbors.
One then adds k directed long-range links out of each node v, for a constant k; the
endpoint of each link is chosen uniformly at random. Results from the theory of
random graphs can be used to show that with high probability, there will be short
paths connecting all pairs of nodes (see e.g. [3]); at the same time, the network will
locally retain a lattice-like structure. Asymptotically, our criterion for “shortness”
of paths is what one obtains from this and similar random constructions: there
should be paths whose lengths are bounded by a polynomial in logn, where n is
the number of nodes. We will refer to such a function as polylogarithmic.

This network model, a superposition of a lattice and a set of long-range links, is
a natural one in which to study the behavior of a decentralized search algorithm.
The algorithm knows the structure of the lattice; it starts from a node s, and is told
the coordinates of a target node ¢. It successively traverses links of the network so
as to reach the target as quickly as possible; but, crucially, it does not know the
long-range links out of any node that it has not yet visited. In addition to moving
forward across directed links, the algorithm may travel in reverse across any link
that it has already followed in the forward direction; this allows it to back up when
it does not want to continue exploring from its current node. One can view this
as hitting the “back button” on a Web browser — or returning the letter to its
previous holder in Milgram’s experiments, with instructions that he or she should
try someone else. We say that the algorithm has search time Y (n) if, on a randomly
generated n-node network with s and ¢ chosen uniformly at random, it reaches the
target t in at most Y (n) steps with probability at least 1 —e(n), for a function &(-)
going to 0 with n.

The first result in [15] is that no decentralized algorithm can achieve a polyloga-
rithmic search time in this network model — even though, with high probability,
there are paths of polylogarithmic length joining all pairs of nodes. However, if we
generalize the model slightly, then it can support efficient search. Specifically, when
we construct a long-range link (v, w) out of v, we do not choose w uniformly at
random; rather, we choose it with probability proportional to d~%, where d is the
lattice distance from v to w. In this way, the long-range links become correlated to
the geometry of the lattice. We show in [15] that when « is equal to p, the dimen-
sion of the underlying lattice, then a decentralized greedy algorithm achieves search
time proportional to log® n; and for any other value of «, there is no decentralized
algorithm with a polylogarithmic search time.

Recent work by Zhang, Goel, and Govindan [26] has shown how the distribution of
links associated with the optimal value of @ may lead to improved performance for
decentralized search in the Freenet peer-to-peer system. Adamic, Lukose, Puniyani,
and Huberman [2] have recently considered a variation of the decentralized search
problem in a network that has essentially no known underlying structure; however,
when the number of links incident to nodes follows a power-law distribution, then
a search strategy that seeks high-degree nodes can be effective. They have applied
their results to the Gnutella system, which exhibits such a structure. In joint
work with Kempe and Demers [12], we have studied how distributions that are



inverse-polynomial in the distance between nodes can be used in the design of
gossip protocols for spreading information in a network of communicating agents.

The goal of the present paper is to consider more generally the problem of decen-
tralized search in networks with partial information about the underlying structure.
While a lattice makes for a natural network backbone, we would like to understand
the extent to which the principles underlying efficient decentralized search can be
abstracted away from a lattice-like structure. We begin by considering networks
that are generated from a hierarchical structure, and show that qualitatively sim-
ilar results can be obtained; we then discuss a general model of group structures,
which can be viewed as a simultaneous generalization of lattices and hierarchies.

We refer to k, the number of out-links per node, as the out-degree of the model.
The technical details of our results — both in the statements of the results and the
proofs — are simpler when we allow the out-degree to be polylogarithmic, rather
than constant. Thus we describe this case first, and then move on to the case in
which each node has only a constant number of out-links.

2 Hierarchical Network Models

In a number of settings, nodes represent objects that can be classified according to
a hierarchy or taxonomy; and nodes are more likely to form links if they belong to
the same small sub-tree in the hierarchy, indicating they are more closely related.

To construct a network model from this idea, we represent the hierarchy using a
complete b-ary tree T, where b is a constant. Let V' denote the set of leaves of T'; we
use n to denote the size of V', and for two leaves v and w, we use h(v, w) to denote the
height of the least common ancestor of v and w in T'. We are also given a monotone
non-increasing function f(-) that will determine link probabilities. For each node
v € V, we create a random link to w with probability proportional to f(h(v,w)); in
other words, the probability of choosing w is equal to f(h(v,w))/ >, ., f(h(v, z)).
We create k links out of each node v this way, choosing the endpoint w each time
independently and with repetition allowed. This results in a graph G on the set V.

For the analysis in this section, we will take the out-degree to be k = clog®n, for
a constant c. It is important to note that the tree T is used only in the generation
process of G; neither the edges nor the non-leaf nodes of T' appear in G. (By way
of contrast, the lattice model in [15] included both the long-range links and the
nearest-neighbor links of the lattice itself.) When we use the term “node” without
any qualification, we are referring to nodes of GG, and hence to leaves of T'; we will
use “internal node” to refer to non-leaf nodes of 7.

We refer to the process producing G as a hierarchical model with exponent « if the
function f(h) grows asymptotically like b=":

7a//h
lim f(h/) =0 for all &’ < a and lim L =0 for all o' > a.
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There are several natural interpretations for a hierarchical network model. One is in
terms of the World Wide Web, where T is a topic hierarchy such as www.yahoo.com.
Each leaf of T' corresponds to a Web page, and its path from the root speci-
fies an increasingly fine-grained description of the page’s topic. Thus, a partic-
ular leaf may be associated with Science/Computer_Science/Algorithms or with
Arts/Music/Opera. The linkage probabilities then have a simple meaning — they
are based on the distance between the topics of the pages, as measured by the
height of their least common ancestor in the topic hierarchy. A page on Sci-



ence/Computer_Science/Algorithms may thus be more likely to link to one on Sci-
ence/Computer_Science/Machine_Learning than to one on Arts/Music/Opera. Of
course, the model is a strong simplification, since topic structures are not fully hier-
archical, and certainly do not have uniform branching and depth. It is worth noting
that a number of recent models for the link structure of the Web, as well as other
relational structures, have looked at different ways in which similarities in content
can affect the probability of linkage; see e.g. [1, 6, 9].

Another interpretation of the hierarchical model is in terms of Milgram’s original
experiment. Studies performed by Killworth and Bernard [13] showed that in choos-
ing a recipient for the letter, participants were overwhelmingly guided by one of two
criteria: similarity to the target in geography, or similarity to the target in occu-
pation. If one views the lattice as forming a simple model for geographic factors,
the hierarchical model can similarly be interpreted as forming a “topic hierarchy”
of occupations, with individuals at the leaves. Thus, for example, the occupations
of “banker” and “stock broker” may belong to the same small sub-tree; since the
target in one of Milgram’s experiments was a stock broker, it might therefore be
a good strategy to send the letter to a banker. Independently of our work here,
Watts, Dodds, and Newman have recently studied hierarchical structures for mod-
eling Milgram’s experiment in social networks [24].

We now consider the search problem in a graph G generated from a hierarchical
model: A decentralized algorithm has knowledge of the tree 7', and knows the
location of a target leaf that it must reach; however, it only learns the structure of
G as it visits nodes. The exponent o determines how the structures of G and T
are related; how does this affect the navigability of G? In the analysis of the lattice
model [15], the key property of the optimal exponent was that, from any point, there
was a reasonable probability of a long-range link that halved the distance to the
target. We make use of a similar idea here: when o = 1, there is always a reasonable
probability of finding a long-range link into a strictly smaller sub-tree containing
the target. As mentioned above, we focus here on the case of polylogarithmic out-
degree, with the case of constant out-degree deferred until later.

Theorem 2.1 (a) There is a hierarchical model with exponent « = 1 and poly-
logarithmic out-degree in which a decentralized algorithm can achieve search time

O(logn).

(b) For every o # 1, there is no hierarchical model with exponent « and polylog-
arithmic out-degree in which a decentralized algorithm can achieve polylogarithmic
search time.

Due to space limitations, we omit proofs from this version of the paper. Complete
proofs may be found in the extended version, which is available on the author’s
Web page (http://www.cs.cornell.edu/home/kleinber/).

To prove (a), we show that when the search is at a node v whose least common
ancestor with the target has height h, there is a high probability that v has a link
into the sub-tree of height h—1 containing the target. In this way, the search reaches
the target in logarithmically many steps. To prove (b), we exhibit a sub-tree T’
containing the target such that, with high probability, it takes any decentralized
algorithm more than a polylogarithmic number of steps to find a link into 7".

3 Group Structures

The analysis of the search problem in a hierarchical model is similar to the anal-
ysis of the lattice-based approach in [15], although the two types of models seem



superficially quite different. It is natural to look for a model that would serve as a
simultaneous generalization of each.

Consider a collection of individuals in a social network, and suppose that we know
of certain groups to which individuals belong — people who live in the same town,
or work in the same profession, or have some other affiliation in common. We could
imagine that people are more likely to be connected if they both belong to the
same small group. In a lattice-based model, there may be a group for each subset
of lattice points contained in a common ball (grouping based on proximity); in a
hierarchical model, there may be a group for each subset of leaves contained in a
common sub-tree. We now discuss the notion of a group structure, to make this
precise; we follow a model proposed in joint work with Kempe and Demers [12],
where we were concerned with designing gossip protocols for lattices and hierarchies.
A technically different model of affiliation networks, also motivated by these types
of issues, has been studied recently by Newman, Watts, and Strogatz [18].

A group structure consists of an underlying set V of nodes, and a collection of
subsets of V' (the groups). The collection of groups must include V itself; and it
must satisfy the following two properties, for constants A < 1 and 3 > 1.

(i) If R is a group of size ¢ > 2 containing a node v, then there is a group R’ C R
containing v that is strictly smaller than R, but has size at least \q.

(ii) If Ry, Ro, R3,... are groups that all have size at most ¢ and all contain a
common node v, then their union has size at most (q.

The reader can verify that these two properties hold for the collection of balls in a
lattice, as well as for the collection of sub-trees in a hierarchy. However, it is easy
to construct examples of group structures that do not arise in this way from lattices
or hierarchies.

Given a group structure (V,{R;}), and a monotone non-increasing function f(-), we
now consider the following process for generating a graph on V. For two nodes v
and w, we use ¢(v,w) to denote the minimum size of a group containing both v and
w. (Note that such a group must exist, since V itself is a group.) For each node
v € V, we create a random link to w with probability proportional to f(g(v,w));
repeating this k& times independently yields k links out of v. We refer to this as a
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A decentralized search algorithm in such a network is given knowledge of the full
group structure, and must follow links of G to a designated target t. We now state
an analogue of Theorem 2.1 for group structures.

Theorem 3.1 (a) For every group structure, there is a group-induced model with
exponent o = 1 and polylogarithmic out-degree in which a decentralized algorithm
can achieve search time O(logn).

(b) For every a < 1, there is no group-induced model with exponent o and polylog-
arithmic out-degree in which a decentralized algorithm can achieve polylogarithmic
search time.

Notice that in a hierarchical model, the smallest group (sub-tree) containing two
nodes v and w has size b"**), and so Theorem 3.1(a) implies Theorem 2.1(a).
Similarly, on a lattice, the smallest group (ball) containing two nodes v and w at



lattice distance d has size O(dP), and so Theorem 3.1(a) implies a version of the
result from [15], that efficient search is possible in a lattice model when nodes form
links with probability dP. (In the version of the lattice result implied here, there
are no nearest-neighbor links at all; but each node has a polylogarithmic number
of out-links.)

The proof of Theorem 3.1(a) closely follows the proof of Theorem 2.1(a). We con-
sider a node v — the current point in the search — for which the smallest group
containing v and the target ¢t has size ¢. Using group structure properties (i) and
(ii), we show there is a high probability that v has a link into a group containing ¢ of
size between A\?q and \g. In this way, the search passes through groups containing
t of sizes that diminish geometrically, and hence it terminates in logarithmic time.

Note that Theorem 3.1(b) only considers exponents o < 1. This is because there
exist group-induced models with exponents az > 1 in which decentralized algorithms
can achieve polylogarithmic search time. For example, consider an undirected graph
G™ in which each node has 3 neighbors, and each pair of nodes can be connected
by a path of length O(logn). It is possible to define a group structure satisfying
properties (i) and (ii) in which each edge of G* appears as a 2-node group; but then,
a graph G generated from a group-induced model with a very large exponent o will
contain all edges of G* with high probability, and a decentralized search algorithm
will be able to follow these edges directly to construct a short path to the target.

However, a lower bound for the case a > 1 can be obtained if we place one additional
restriction on the group structure. Give a group structure (V,{R;}), and a cut-off
value ¢, we define a graph H(q) on V by joining any two nodes that belong to a
common group of size at most g. Note that H(q) is not a random graph; it is defined
simply in terms of the group structure and ¢q. We now argue that if many pairs of
nodes are far apart in H(q), for a suitably large value of ¢, then a decentralized
algorithm cannot be efficient when o > 1.

Theorem 3.2 Let (V,{R;}) be a group structure. Suppose there exist constants
v,0 > 0 so that a constant fraction of all pairs of nodes have shortest-path distance
Q(n%) in H(n"). Then for every a > 1, there is no group-induced model on (V, { R;})
with exponent o and a polylogarithmic number of out-links per node in which a
decentralized algorithm can achieve polylogarithmic search time.

Notice this property holds for group structures arising from both lattices and hi-
erarchies; in a lattice, a constant fraction of all pairs in H (nl/ 2r) have distance
Q(n'/?P), while in a hierarchy, the graph H(n?) is disconnected for every v < 1.

4 Nodes with a Constant Number of Out-Links

Thus far, by giving each node more than a constant number of out-links, we have
been able to design very simple search algorithms in networks generated according
to the optimal exponent . From each node, there is a way to make progress toward
the target node ¢, and so the structure of the graph G funnels the search towards
its destination. When the out-degree is constant, however, things get much more
complicated. First of all, with high probability, many nodes will have all their
links leading “away” from the target in the hierarchy. Second, there is a constant
probability that the target ¢ will have no in-coming links, and so the whole task
of finding ¢ becomes ill-defined. This indicates that the statement of the results
themselves in this case will have to be somewhat different.

In this section, we work with a hierarchical model, and construct graphs with con-



stant out-degree k; the value of k will need to be sufficiently large in terms of other
parameters of the model. It is straightforward to formulate an analogue of our
results for group structures, but we do not go into the details of this here.

To deal with the problem that ¢ itself may have no incoming links, we relax the
search problem to that of finding a cluster of nodes containing ¢. In a topic-based
model of Web pages, for example, we can consider ¢ as a representative of a desired
type of page, with goal being to find any page of this type. Thus, we are given a
complete b-ary tree T, where b is a constant; we let L denote the set of leaves of
T, and m denote the size of L. We place r nodes at each leaf of T, forming a set
V of n = mr nodes total. We then define a graph G on V as in Section 2: for a
non-increasing function f(-), we create k links out of each node v € V| choosing w
as an endpoint with probability proportional to f(h(v,w)). As before, we refer to
this process as a hierarchical model with exponent «, for the appropriate value of
«. We refer to each set of r nodes at a common leaf of T as a cluster, and define
the resolution of the hierarchical model to be the value r.

A decentralized algorithm is given knowledge of T', and a target node t; it must
reach any node in the cluster containing ¢. Unlike the previous algorithms we have
developed, which only moved forward across links, the algorithm we design here will
need to make use of the ability to travel in reverse across any link that it has already
followed in the forward direction. Note also that we cannot easily reduce the current
search problem to that of Section 2 by collapsing clusters into “super-nodes,” since
there are not necessarily links joining nodes within the same cluster.

The search task clearly becomes easier as the resolution of the model (i.e. the size of
clusters) becomes larger. Thus, our goal is to achieve polylogarithmic search time
in a hierarchical model with polylogarithmic resolution.

Theorem 4.1 (a) There is a hierarchical model with exponent o = 1, constant
out-degree, and polylogarithmic resolution in which a decentralized algorithm can
achieve polylogarithmic search time.

(b) For every o # 1, there is no hierarchical model with exponent «, constant out-
degree, and polylogarithmic resolution in which a decentralized algorithm can achieve
polylogarithmic search time.

The search algorithm used to establish part (a) operates in phases. It begins each
phase j with a collection of ©(logn) nodes all belonging to the sub-tree T that con-
tains the target ¢ and whose root is at depth j. During phase j, it explores outward
from each of these nodes until it has discovered a larger but still polylogarithmic-
sized set of nodes belonging to T;. From among these, there is a high probability
that at least O(logn) have links into the smaller sub-tree T;; that contains ¢ and
whose root is at depth j + 1. At this point, phase j + 1 begins, and the process
continues until the cluster containing ¢ is found.
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