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Abstract

A mixed-signal paradigm is presented for high-resolution parallel inner-
product computation in very high dimensions, suitable for efficient im-
plementation of kernels in image processing. At the core of the externally
digital architecture is a high-density, low-power analog array performing
binary-binary partial matrix-vector multiplication. Full digital resolution
is maintained even with low-resolution analog-to-digital conversion, ow-
ing to random statistics in the analog summation of binary products. A
random modulation scheme produces near-Bernoulli statistics even for
highly correlated inputs. The approach is validated with real image data,
and with experimental results from a CID/DRAM analog array prototype
in 0.5 � m CMOS.

1 Introduction

Analog computational arrays [1, 2, 3, 4] for neural information processing offer very large
integration density and throughput as needed for real-time tasks in computer vision and
pattern recognition [5]. Despite the success of adaptive algorithms and architectures in re-
ducing the effect of analog component mismatch and noise on system performance [6, 7],
the precision and repeatability of analog VLSI computation under process and environ-
mental variations is inadequate for some applications. Digital implementation [10] offers
absolute precision limited only by wordlength, but at the cost of significantly larger silicon
area and power dissipation compared with dedicated, fine-grain parallel analog implemen-
tation, e.g., [2, 4].

The purpose of this paper is twofold: to present an internally analog, externally digital ar-
chitecture for dedicated VLSI kernel-based array processing that outperforms purely digital
approaches with a factor 100-10,000 in throughput, density and energy efficiency; and to
provide a scheme for digital resolution enhancement that exploits Bernoulli random statis-
tics of binary vectors. Largest gains in system precision are obtained for high input dimen-
sions. The framework allows to operate at full digital resolution with relatively imprecise
analog hardware, and with minimal cost in implementation complexity to randomize the
input data.

The computational core of inner-product based kernel operations in image processing and



pattern recognition is that of vector-matrix multiplication (VMM) in high dimensions:
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with � -dimensional input vector ��� , � -dimensional output vector
���

, and ����� matrix
elements � � � . In artificial neural networks, the matrix elements � � � correspond to
weights, or synapses, between neurons. The elements also represent templates � � � �
� � � in a vector quantizer [8], or support vectors in a support vector machine [9]. In
what follows we concentrate on VMM computation which dominates inner-product based1

kernel computations for high vector dimensions.

2 The Kerneltron: A Massively Parallel VLSI Computational Array

2.1 Internally Analog, Externally Digital Computation

The approach combines the computational efficiency of analog array processing with the
precision of digital processing and the convenience of a programmable and reconfigurable
digital interface.

The digital representation is embedded in the analog array architecture, with inputs pre-
sented in bit-serial fashion, and matrix elements stored locally in bit-parallel form:
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decomposing (1) into:
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with binary-binary VMM partials:
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The key is to compute and accumulate the binary-binary partial products (5) using an ana-
log VMM array, and to combine the quantized results in the digital domain according to (4).
Digital-to-analog conversion at the input interface is inherent in the bit-serial implementa-
tion, and row-parallel analog-to-digital converters (ADCs) are used at the output interface
to quantize

��� ! � / &
#
. A 512 � 128 array prototype using CID/DRAM cells is shown in

Figure 1 (a).

2.2 CID/DRAM Cell and Array

The unit cell in the analog array combines a CID computational element [12, 13] with a
DRAM storage element. The cell stores one bit of a matrix element

� � � !
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, performs
a one-quadrant binary-binary multiplication of
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and
' � ! &

#
in (5), and accumulates

1Radial basis kernels with 354 -norm can also be formulated in inner product format.
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Figure 1: (a) Micrograph of the Kerneltron prototype, containing an array of ��� � ��� � �CID/DRAM cells, and a row-parallel bank of � � � flash ADCs. Die size is ����� �	�����
in 0.5 � m CMOS technology. (b) CID computational cell with integrated DRAM storage.
Circuit diagram, and charge transfer diagram for active write and compute operations.

the result across cells with common 
 and � indices. The circuit diagram and operation
of the cell are given in Figure 1 (b). An array of cells thus performs (unsigned) binary
multiplication (5) of matrix

� � � !
�$#

and vector
' � ! &

#
yielding

� � ! � / &
#
, for values of � in

parallel across the array, and values of � in sequence over time.

The cell contains three MOS transistors connected in series as depicted in Figure 1 (b).
Transistors M1 and M2 comprise a dynamic random-access memory (DRAM) cell, with
switch M1 controlled by Row Select signal 
�� � ! �$#

. When activated, the binary quantity� � � !
�$#

is written in the form of charge (either �	� or 0) stored under the gate of M2.
Transistors M2 and M3 in turn comprise a charge injection device (CID), which by virtue of
charge conservation moves electric charge between two potential wells in a non-destructive
manner [12, 13, 14].

The charge left under the gate of M2 can only be redistributed between the two CID tran-
sistors, M2 and M3. An active charge transfer from M2 to M3 can only occur if there is
non-zero charge stored, and if the potential on the gate of M2 drops below that of M3 [12].
This condition implies a logical AND, i.e., unsigned binary multiplication, of

� � � !
�$#

and' � ! &
#
. The multiply-and-accumulate operation is then completed by capacitively sensing

the amount of charge transferred onto the electrode of M3, the output summing node. To
this end, the voltage on the output line, left floating after being pre-charged to ������� � ,
is observed. When the charge transfer is active, the cell contributes a change in voltage
�	������� � �	����� �"! where �#�"! is the total capacitance on the output line across cells.
The total response is thus proportional to the number of actively transferring cells. After
deactivating the input

' � ! &
#
, the transferred charge returns to the storage node M2. The

CID computation is non-destructive and intrinsically reversible [12], and DRAM refresh is
only required to counteract junction and subthreshold leakage.

The bottom diagram in Figure 1 (b) depicts the charge transfer timing diagram for write



and compute operations in the case when both
� � � !

�0#
and

' � ! &
#

are of logic level 1.

2.3 System-Level Performance

Measurements on the 512 � 128-element analog array and other fabricated prototypes show
a dynamic range of 43 dB, and a computational cycle of 10 � s with power consumption of
50 nW per cell. The size of the CID/DRAM cell is 8 � � 45 � with � ��� 1 � � 
 .

The overall system resolution is limited by the precision in the quantization of the outputs
from the analog array. Through digital postprocessing, two bits are gained over the resolu-
tion of the ADCs used [15], for a total system resolution of 8 bits. Larger resolutions can
be obtained by accounting for the statistics of binary terms in the addition, the subject of
the next section.

3 Resolution Enhancement Through Stochastic Encoding

Since the analog inner product (5) is discrete, zero error can be achieved (as if computed
digitally) by matching the quantization levels of the ADC with each of the ��� � discrete
levels in the inner product. Perfect reconstruction of

��� ! � / &
#

from the quantized output, for
an overall resolution of �����	��

��� .�� ��� ��� bits, assumes the combined effect of noise and
nonlinearity in the analog array and the ADC is within one LSB (least significant bit). For
large arrays, this places stringent requirements on analog precision and ADC resolution,��� 

��� .�� ��� ��� .
The implicit assumption is that all quantization levels are (equally) needed. A straight-
forward study of the statistics of the inner product, below, reveals that this is poor use of
available resources.

3.1 Bernoulli Statistics

In what follows we assume signed, rather than unsigned, binary values for inputs and
weights,

' � ! &
# ��� � and

� � � !
�0# ��� � . This translates to exclusive-OR (XOR), rather

than AND, multiplication on the analog array, an operation that can be easily accomplished
with the CID/DRAM architecture by differentially coding input and stored bits using twice
the number of columns and unit cells.

For input bits
' � ! &

#
that are Bernoulli distributed (i.e., fair coin flips), the (XOR) product

terms
� � � !

�$# ' � ! &
#

in (5) are Bernoulli distributed, regardless of
� � � !

�$#
. Their sum
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thus follows a binomial distribution��� � � ! � / &
#
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with & �#� 1 � , � �#�+* 1$101 * � , which in the Central Limit �-,/. approaches a normal
distribution with zero mean and variance � . In other words, for random inputs in high
dimensions � the active range (or standard deviation) of the inner-product is � �10 .

, a factor� �10 .
smaller than the full range � .

In principle, this allows to relax the effective resolution of the ADC. However, any re-
duction in conversion range will result in a small but non-zero probability of overflow. In
practice, the risk of overflow can be reduced to negligible levels with a few additional bits
in the ADC conversion range. An alternative strategy is to use a variable resolution ADC
which expands the conversion range on rare occurences of overflow.2

2Or, with stochastic input encoding, overflow detection could initiate a different random draw.
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Figure 2: Experimental results from CID/DRAM analog array. (a) Output voltage on the
sense line computing exclusive-or inner product of 64-dimensional stored and presented
binary vectors. A variable number of active bits is summed at different locations in the
array by shifting the presented bits. (b) Top: Measured output and actual inner product
for 1,024 samples of Bernoulli distributed pairs of stored and presented vectors. Bottom:
Histogram of measured array outputs.

3.2 Experimental Results

While the reduced range of the analog inner product supports lower ADC resolution in
terms of number of quantization levels, it requires low levels of mismatch and noise so that
the discrete levels can be individually resolved, near the center of the distribution. To verify
this, we conducted the following experiment.

Figure 2 shows the measured outputs on one row of 128 CID/DRAM cells, configured dif-
ferentially to compute signed binary (exclusive-OR) inner products of stored and presented
binary vectors in 64 dimensions. The scope trace in Figure 2 (a) is obtained by storing all� � bits, and shifting a sequence of input bits that differ with the stored bits by � � ��� bits.
The left and right segment of the scope trace correspond to different selections of active
bit locations along the array that are maximally disjoint, to indicate a worst-case mismatch
scenario. The measured and actual inner products in Figure 2 (b) are obtained by stor-
ing and presenting 1,024 pairs of random binary vectors. The histogram shows a clearly
resolved, discrete binomial distribution for the observed analog voltage.

For very large arrays, mismatch and noise may pose a problem in the present implementa-
tion with floating sense line. A sense amplifier with virtual ground on the sense line and
feedback capacitor optimized to the � �10 .

range would provide a simple solution.

3.3 Real Image Data

Although most randomly selected patterns do not correlate with any chosen template, pat-
terns from the real world tend to correlate, and certainly those that are of interest to kernel
computation 3. The key is stochastic encoding of the inputs, as to randomize the bits pre-
sented to the analog array.

3This observation, and the binomial distribution for sums of random bits (6), forms the basis for
the associative recall in a Kanerva memory.
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Figure 3: Histograms of partial binary inner products
� ! � / &

#
for 256 pairs of randomly

selected 32 � 32 pixel segments of Lena. Left: with unmodulated 8-bit image data for
both vectors. Right: with 12-bit modulated stochastic encoding of one of the two vectors.
Top: all bit planes � and � . Bottom: most significant bit (MSB) plane, � � � ���

.

Randomizing an informative input while retaining the information is a futile goal, and we
are content with a solution that approaches the ideal performance within observable bounds,
and with reasonable cost in implementation. Given that “ideal” randomized inputs relax the
ADC resolution by ����� . � � � bits, they necessarily reduce the wordlenght of the output by
the same. To account for the lost bits in the range of the output, it is necessary to increase
the range of the “ideal” randomized input by the same number of bits.

One possible stochastic encoding scheme that restores the range is � �10 .
-fold oversampling

of the input through (digital) delta-sigma modulation. This is a workable solution; however
we propose one that is simpler and less costly to implement. For each � -bit input compo-
nent � � , pick a random integer � � in the range

� � � �10 .  ��� , and subtract it to produce
a modulated input

���� � ���  � � with ����� . � � � additional bits. It can be shown that for
worst-case deterministic inputs ��� the mean of the inner product for

���� is off at most by� � �10 .
from the origin. The desired inner products for � � are retrieved by digitally adding

the inner products obtained for
�� � and � � . The random offset � � can be chosen once, so

its inner product with the templates can be pre-computed upon initializing or programming
the array. The implementation cost is thus limited to component-wise subtraction of � �
and � � , achieved using one full adder cell, one bit register, and ROM storage of the � � !

�$#
bits for every column of the array.

Figure 3 provides a proof of principle, using image data selected at random from Lena.
12-bit stochastic encoding of the 8-bit image, by subtracting a random variable in a range
15 times larger than the image, produces the desired binomial distribution for the partial bit
inner products, even for the most significant bit (MSB) which is most highly correlated.



4 Conclusions

We presented an externally digital, internally analog VLSI array architecture suitable for
real-time kernel-based neural computation and machine learning in very large dimensions,
such as image recognition. Fine-grain massive parallelism and distributed memory, in an ar-
ray of 3-transistor CID/DRAM cells, provides a throughput of � � � � � . binary MACS (mul-
tiply accumulates per second) per Watt of power in a 0.5 � m process. A simple stochastic
encoding scheme relaxes precision requirements in the analog implementation by one bit
for each four-fold increase in vector dimension, while retaining full digital overall system
resolution.
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