
Pranking with Ranking

Koby Crammer and Yoram Singer
School of Computer Science & Engineering

The Hebrew University, Jerusalem 91904, Israel
{kobics,singer}@cs.huji.ac.il

Abstract
We discuss the problem of ranking instances. In our framework
each instance is associated with a rank or a rating, which is an
integer from 1 to k. Our goal is to find a rank-prediction rule that
assigns each instance a rank which is as close as possible to the
instance 's true rank. We describe a simple and efficient online al­
gorithm, analyze its performance in the mistake bound model, and
prove its correctness. We describe two sets of experiments, with
synthetic data and with the EachMovie dataset for collaborative
filtering. In the experiments we performed, our algorithm outper­
forms online algorithms for regression and classification applied to
ranking.

1 Introduction

The ranking problem we discuss in this paper shares common properties with both
classification and regression problems. As in classification problems the goal is to
assign one of k possible labels to a new instance. Similar to regression problems,
the set of k labels is structured as there is a total order relation between the labels.
We refer to the labels as ranks and without loss of generality assume that the ranks
constitute the set {I, 2, .. . , k} . Settings in which it is natural to rank or rate in­
stances rather than classify are common in tasks such as information retrieval and
collaborative filtering. We use the latter as our running example. In collaborative
filtering the goal is to predict a user's rating on new items such as books or movies
given the user's past ratings of the similar items. The goal is to determine whether
a movie fan will like a new movie and to what degree, which is expressed as a
rank. An example for possible ratings might be, run-to-see, very-good, good,
only-if-you-must, and do-not-bother. While the different ratings carry mean­
ingful semantics, from a learning-theoretic point of view we model the ratings as a
totally ordered set (whose size is 5 in the example above).

The interest in ordering or ranking of objects is by no means new and is still the
source of ongoing research in many fields such mathematical economics, social sci­
ence, and computer science. Due to lack of space we clearly cannot cover thoroughly
previous work related to ranking. For a short overview from a learning-theoretic
point of view see [1] and the references therein. One of the main results of [1] un­
derscores a complexity gap between classification learning and ranking learning. To
sidestep the inherent intractability problems of ranking learning several approaches
have been suggested. One possible approach is to cast a ranking problem as a
regression problem. Another approach is to reduce a total order into a set of pref-

Correct interval

#l \ I

Figure 1: An Illustration of the update rule.

erences over pairs [3, 5]. The first case imposes a metric on the set of ranking rules
which might not be realistic, while the second approach is time consuming since it
requires increasing the sample size from n to O(n2).

In this paper we consider an alternative approach that directly maintains a totally
ordered set via projections. Our starting point is similar to that of Herbrich et. al [5]
in the sense that we project each instance into the reals. However, our work then
deviates and operates directly on rankings by associating each ranking with distinct
sub-interval of the reals and adapting the support of each sub-interval while learn­
ing. In the next section we describe a simple and efficient online algorithm that
manipulates concurrently the direction onto which we project the instances and
the division into sub-intervals. In Sec. 3 we prove the correctness of the algorithm
and analyze its performance in the mistake bound model. We describe in Sec. 4
experiments that compare the algorithm to online algorithms for classification and
regression applied to ranking which demonstrate the merits of our approach.

2 The PRank Algorithm

This paper focuses on online algorithms for ranking instances. We are given a
sequence (Xl, yl), ... , (xt , yt) , ... of instance-rank pairs. Each instance xt is in IRn

and its corresponding rank yt is an element from finite set y with a total order
relation. We assume without loss of generality that y = {I , 2, ... ,k} with ">"
as the order relation. The total order over the set Y induces a partial order over
the instances in the following natural sense. We say that xt is preferred over X S

if yt > yS. We also say that xt and x S are not comparable if neither yt > yS nor
yt < yS. We denote this case simply as yt = yS. Note that the induced partial order
is of a unique form in which the instances form k equivalence classes which are totally
orderedl . A ranking rule H is a mapping from instances to ranks, H : IRn -+ y.
The family of ranking rules we discuss in this paper employs a vector w E IRn and
a set of k thresholds bl :::; ... :::; bk- l :::; bk = 00. For convenience we denote by
b = (bl , . .. ,bk-d the vector of thresholds excluding bk which is fixed to 00. Given a
new instance x the ranking rule first computes the inner-product between w and x .
The predicted rank is then defined to be the index of the first (smallest) threshold
br for which w . x < br . This type of ranking rules divide the space into parallel
equally-ranked regions: all the instances that satisfy br - l < W· x < br are assigned
the same rank r. Formally, given a ranking rule defined by wand b the predicted
rank of an instance x is, H(x) = minrE{l, ... ,k}{r : w . x - br < O}. Note that the
above minimum is always well defined since we set bk = 00.

The analysis that we use in this paper is based on the mistake bound model for
online learning. The algorithm we describe works in rounds. On round t the learning
algorithm gets an instance xt. Given x t , the algorithm outputs a rank, il = minr {r :
W· x - br < O}. It then receives the correct rank yt and updates its ranking rule by
modifying wand b. We say that our algorithm made a ranking mistake if il f:. yt.

IFor a discussion of this type of partial orders see [6] .

Initialize: Set wI = 0 , b~ , ... , bLl = 0, bl = 00 .

Loop: Fort=1 ,2, ... ,T

• Get a new rank-value xt E IRn.
• Predict fl = minr E{I, ... ,k} {r: w t . xt - b~ < o}.
• Get a new label yt.
• If fl t- yt update w t (otherwise set w t+! = w t , \;fr : b~+! = bn :

1. For r = 1, ... , k - 1 If yt :::; r Then y~ = -1
Else y~ = 1.

2. For r = 1, ... , k - 1 If (wt . xt - b~)y~ :::; 0 Then T; = y~
Else T; = o.

3. Update w t+! f- w t + CLr T;)xt.
For r = 1, . .. , k - 1 update: b~+1 f- b~ - T;

Output: H(x) = minr E{1, ... ,k} {r : w T +! . x - b;+! < O}.

Figure 2: The PRank algorithm.

We wish to make the predicted rank as close as possible to the true rank. Formally,
the goal of the learning algorithm is to minimize the ranking-loss which is defined to
be the number of thresholds between the true rank and the predicted rank. Using
the representation of ranks as integers in {I ... k}, the ranking-loss after T rounds
is equal to the accumulated difference between the predicted and true rank-values,
'£'[=1 W - yt I. The algorithm we describe updates its ranking rule only on rounds
on which it made ranking mistakes. Such algorithms are called conservative.

We now describe the update rule of the algorithm which is motivated by the per­
ceptron algorithm for classification and hence we call it the PRank algorithm (for
Perceptron Ranking). For simplicity, we omit the index of the round when refer­
ring to an input instance-rank pair (x, y) and the ranking rule wand h. Since
b1 :::; b2 :::; ... :::; bk- 1 :::; bk then the predicted rank is correct if w . x > br for
r = 1, ... ,y - 1 and w . x < br for y, . .. , k - 1. We represent the above inequali­
ties by expanding the rank y into into k - 1 virtual variables Yl , ... ,Yk-l. We set
Yr = +1 for the case W· x > br and Yr = -1 for w . x < br. Put another way, a
rank value y induces the vector (Yl, ... , Yk-d = (+1, ... , +1 , -1 , ... , -1) where the
maximal index r for which Yr = +1 is y-1. Thus, the prediction of a ranking rule is
correct if Yr(w· x - br) > 0 for all r. If the algorithm makes a mistake by ranking x
as fj instead of Y then there is at least one threshold, indexed r, for which the value
of W· x is on the wrong side of br , i.e. Yr(w· x - br) :::; O. To correct the mistake, we
need to "move" the values of W· x and br toward each other. We do so by modifying
only the values of the br's for which Yr (w . x - br) :::; 0 and replace them with br - Yr.
We also replace the value of w with w + ('£ Yr)x where the sum is taken over the
indices r for which there was a prediction error, i.e., Yr (w . x - br) :::; o.
An illustration of the update rule is given in Fig 1. In the example, we used the
set Y = {I ... 5}. (Note that b5 = 00 is omitted from all the plots in Fig 1.) The
correct rank of the instance is Y = 4, and thus the value of w . x should fall in the
fourth interval, between b3 and b4 . However, in the illustration the value of w . x
fell below b1 and the predicted rank is fj = 1. The threshold values b1 , b2 and b3 are
a source of the error since the value of b1 , b2 , b3 is higher then W· x. To mend the
mistake the algorithm decreases b1 , b2 and b3 by a unit value and replace them with
b1 -1 , b2 -1 and b3 -1. It also modifies w to be w+3x since '£r:Yr(w.x- br):SO Yr = 3.
Thus, the inner-product W· x increases by 311x11 2 . This update is illustrated at the
middle plot of Fig. 1. The updated prediction rule is sketched on the right hand

side of Fig. 1. Note that after the update, the predicted rank of x is Y = 3 which is
closer to the true rank y = 4. The pseudocode of algorithm is given in Fig 2.

To conclude this section we like to note that PRank can be straightforwardly com­
bined with Mercer kernels [8] and voting techniques [4] often used for improving the
performance of margin classifiers in batch and online settings.

3 Analysis

Before we prove the mistake bound of the algorithm we first show that it main­
tains a consistent hypothesis in the sense that it preserves the correct order of the
thresholds. Specifically, we show by induction that for any ranking rule that can
be derived by the algorithm along its run, (w1 , b 1) , ... , (wT +1 , b T +1) we have
that b~ :S ... :S bL1 for all t. Since the initialization of the thresholds is such that
b~ :S b~ :S ... :S bL1' then it suffices to show that the claim holds inductively. For
simplicity, we write the updating rule of PRank in an alternative form. Let [7f] be
1 if the predicate 7f holds and 0 otherwise. We now rewrite the value of T; (from
Fig. 2) as T; = y~[(wt . xt - bny~ :S 0]. Note that the values of b~ are integers for
all r and t since for all r we initialize b; = 0, and b~+l - b~ E {-1 , 0, +1}.

Lemma 1 (Order Preservation) Let w t and b t be the current ranking rule,
where bi :S .. . :S bL1' and let (xt,yt) be an instance-rank pair fed to PRank
on round t. Denote by wt+1 and bt+1 the resulting ranking rule after the update of
PRank, then bi+1 :S ... :S bt~ll·

Proof: In order to show that PRank maintains the order of the thresholds we
use the definition of the algorithm for y~, namely we define y~ = +1 for r < yt and
y~ = -1 for r 2:: yt. We now prove that b~t~ 2:: b~+l for all r by showing that

b~+l - b~ 2:: y~+1[(wt . xt - b~+1)Y;+l :S 0] - y;[(wt . xt - b;)y; :S 0], (1)

which we obtain by substituting the values of bt+1. Since b~+1 :S b~ and b~ ,b~+1 E Z
we get that the value of b~+1 - b~ on the left hand side of Eq. (1) is a non-negative
integer. Recall that y~ = 1 if yt > r and y~ = -1 otherwise, and therefore,
y~+l :S y~. We now analyze two cases. We first consider the case y~+1 :j:. y~ which
implies that y~+l = -1, y~ = +1. In this case, the right hand-side of Eq. (1) is at
most zero, and the claim trivially holds. The other case is when y~+1 = y~. Here
we get that the value of the right hand-side Eq. (1) cannot exceed 1. We therefore
have to consider only the case where b~ = b~+1 and y~+1 = y~. But given these two
conditions we have that y~+1[(wt. xt - b~+1)Y~+1 < 0] and y~[(wt. xt - b~)y~ < 0]
are equal. The right hand side of Eq. (1) is now zero and the inequality holds with
equality. •

In order to simplify the analysis of the algorithm we introduce the following nota­
tion. Given a hyperplane wand a set of k -1 thresholds b we denote by v E ~n+k-1
the vector which is a concatenation of wand b that is v = (w, b). For brevity we re­
fer to the vector vas a ranking rule. Given two vectors v' = (w', b ') and v = (w, b)
we have v' . v = w' . w + b' . b and IIvl12 = IIwl1 2 + IlbW.

Theorem 2 (Mistake bound) Let (xl, y1), ... , (xT , yT) be an input sequence for
PRank where xt E ~n and yt E {l. .. k}. Denote by R2 = maxt Ilxtl12. Assume
that there is a ranking rule v* = (w* , b*) with br :S ... :S bk- 1 of a unit norm that
classifies the entire sequence correctly with margin "(= minr,t{ (w* . xt - b;)yn > o.
Then, the rank loss of the algorithm '£;=1 Iyt - yt I, is at most (k - 1) (R2 + 1) / "(2 .

Proof: Let us fix an example (xt, yt) which the algorithm received on round t.
By definition the algorithm ranked the example using the ranking rule v t which is
composed of w t and the thresholds b t . Similarly, we denote by vt+l the updated
rule (wt+l bt+l) after round t That is wt+l = w t + (" Tt)xt and bt+l = bt - Tt , ., ur r r r r
for r = 1, 2, ... , k - 1. Let us denote by n t = W - yt 1 the difference between the true
rank and the predicted rank. It is straightforward to verify that nt = 2:=r ITn Note
that if there wasn't a ranking mistake on round t then T; = ° for r = 1, ... , k-1, and
thus also nt = 0. To prove the theorem we bound 2:=t nt from above by bounding
IIvtl12 from above and below. First, we derive a lower bound on IIvtl12 by bounding
v* . vH1 . Substituting the values of w H1 and b H1 we get,

k-1

v* . vt+l = v* . v t + 2:= T; (w* . xt - b;)
r=1

(2)

We further bound the right term by considering two cases. Using the definition of
T; from the pseudocode in Fig. 2 we need to analyze two cases. If (wt ·xt - b~)y; :::; °
then T; = y;. Using the assumption that v* ranks the data correctly with a margin
of at least "(we get that T;(W* . xt - b;) ~ "(. For the other case for which
(wt . xt - b;)y; > ° we have T; = ° and thus T;(W* . xt - b;) = 0. Summing
now over r we get,

k-1

2:= T; (w* . x t - b;) ~ nt"(. (3)
r = 1

Combining Eq. (2) and Eq. (3) we get v* . vt+l ~ v* . v t + nt"(. Unfolding the
sum, we get that after T rounds the algorithm satisfies, v* . v T+1 ~ 2:=t nt"(=

"(2:=t nt. Plugging this result into Cauchy-Schwartz inequality, (1IvT+111 21Iv* 112 ~

(vT+l . v*) 2) and using the assumption that v* is of a unit norm we get the lower

bound, IIvT+ll1 2 ~ (2:=t nt)2 "(2.

Next, we bound the norm of v from above. As before, assume that an example
(xt, yt) was ranked using the ranking rule v t and denote by vt+l the ranking rule
after the round. We now expand the values ofwt+1 and bt+l in the norm ofvH1 and
get, IIvH1 112 = IIwtl12 + IIbt l1 2 + 2 2:=r T; (wt . xt - b;) + (2:=r T;)21IxtI12 + 2:=r (T;)2.
Since T; E {-1,0,+1} we have that (2:=rT;)2 :::; (nt)2 and 2:=r(T;)2 = nt and we
therefore get,

IIvH1 112 :::; IIvtl12 + 22:= T; (wt . xt - b~) + (nt)21IxtW + nt . (4)
r

We further develop the second term using the update rule of the algorithm and get,

2:= T; (wt . xt - b~) = 2:=[(wt . xt - b~)y; :::; 0] ((wt . xt - b~)y~) :::; ° . (5)
r r

Plugging Eq. (5) into Eq. (4) and using the bound IIxtl12 :::; R2 we get that
IlvH1112:::; IIvtl12 + (nt)2R2 + nt. Thus, the ranking rule we obtain after T rounds
of the algorithm satisfies the upper bound, IlvT+l W :::; R2 2:=t(nt)2 + 2:=t nt. Com-

bining the lower bound IlvT+l W ~ (2:=t nt)2 "(2 with the upper bound we have that,

(2:=tnt) 2"(2:::; IlvT+1112:::; R2 2:=t(nt)2 + 2:=t nt . Dividing both sides by "(2 2:=tnt we
finally get,

2:= nt :::; R2 [2:=t(nt)2] f [2:=t ntl + 1 . (6)
t "(

By definition, nt is at most k - 1, which implies that 2:=t(nt)2 :::; 2:=t nt(k - 1) =

(k -1) 2:=t nt. Using this inequality in Eq. (6) we get the desired bound, 2:=;=1 Igt -
ytl = 2:=;=1 nt :::; [(k - 1)R2 + 1lh2 :::; [(k - 1)(R2 + 1)lh2 . •

i"
I

... ~

Figure 3: Comparison of the time-averaged ranking-loss of PRank, WH, and MCP
on synthetic data (left). Comparison of the time-averaged ranking-loss of PRank,
WH, and MCP on the EachMovie dataset using viewers who rated and at least 200
movies (middle) and at least 100 movies (right).

4 Experiments

In this section we describe experiments we performed that compared PRank with
two other online learning algorithms applied to ranking: a multiclass generalization
of the perceptron algorithm [2], denoted MCP, and the Widrow-Hoff [9] algorithm
for online regression learning which we denote by WHo For WH we fixed its learning
rate to a constant value. The hypotheses the three algorithms maintain share
similarities but are different in their complexity: PRank maintains a vector w of
dimension n and a vector of k - 1 modifiable thresholds b, totaling n + k - 1
parameters; MCP maintains k prototypes which are vectors of size n, yielding kn
parameters; WH maintains a single vector w of size n. Therefore, MCP builds the
most complex hypothesis of the three while WH builds the simplest.

Due to the lack of space, we only describe two sets of experiments with two different
datasets. The dataset used in the first experiment is synthetic and was generated in
a similar way to the dataset used by Herbrich et. al. [5]. We first generated random
points x = (Xl, X2) uniformly at random from the unit square [0,1 f. Each point
was assigned a rank y from the set {I, ... , 5} according to the following ranking rule,
y = maxr{r : lO((XI - 0.5)(X2 - 0.5)) + ~ > br } where b = (-00 , -1, -0.1,0.25,1)
and ~ is a normally distributed noise of a zero mean and a standard deviation
of 0.125. We generated 100 sequences of instance-rank pairs each of length 7000.
We fed the sequences to the three algorithms and obtained a prediction for each
instance. We converted the real-valued predictions of WH into ranks by rounding
each prediction to its closest rank value. As in ~5] we used a non-homogeneous
polynomial of degree 2, K(XI' X2) = ((Xl· X2) + 1) as the inner-product operation
between each input instance and the hyperplanes the three algorithms maintain.
At each time step, we computed for each algorithm the accumulated ranking-loss
normalized by the instantaneous sequence length. Formally, the time-averaged loss
after T rounds is, (liT) 'L,i Iyt _ytl. We computed these losses for T = 1, ... ,7000.
To increase the statistical significance of the results we repeated the process 100
times, picking a new random instance-rank sequence of length 7,000 each time, and
averaging the instantaneous losses across the 100 runs. The results are depicted
on the left hand side of Fig. 3. The 95% confidence intervals are smaller then the
symbols used in the plot. In this experiment the performance of MPC is constantly
worse than the performance of WH and PRank. WH initially suffers the smallest
instantaneous loss but after about 500 rounds PRank achieves the best performance
and eventually the number of ranking mistakes that PRank suffers is significantly
lower than both WH and MPC.

In the second set of experiments we used the EachMovie dataset [7]. This dataset
is used for collaborative filtering tasks and contains ratings of movies provided
by 61 , 265 people. Each person in the dataset viewed a subset of movies from a
collection of 1623 titles. Each viewer rated each movie that she saw using one of
6 possible ratings: 0, 0.2, 0.4, 0.6, 0.8,1. We chose subsets of people who viewed a
significant amount of movies extracting for evaluation people who have rated at
least 100 movies. There were 7,542 such viewers. We chose at random one person
among these viewers and set the person's ratings to be the target rank. We used the
ratings of all the rest of the people who viewed enough movies as features. Thus,
the goal is to learn to predict the "taste" of a random user using the user's past
ratings as a feedback and the ratings of fellow viewers as features. The prediction
rule associates a weight with each fellow viewer an therefore can be seen as learning
correlations between the tastes of different viewers. Next, we subtracted 0.5 from
each rating and therefore the possible ratings are -0.5 , -0.3, -0.1 , 0.1, 0.3, 0.5. This
linear transformation enabled us to assign a value of zero to movies which have not
been rated. We fed these feature-rank pairs one at a time, in an online fashion .
Since we picked viewer who rated at least 100 movies, we were able to perform at
least 100 rounds of online predictions and updates. We repeated this experiment
500 times, choosing each time a random viewer for the target rank. The results are
shown on the right hand-side of Fig. 3. The error bars in the plot indicate 95%
condfidence levels. We repeated the experiment using viewers who have seen at
least 200 movies. (There were 1802 such viewers.) The results of this experiment
are shown in the middle plot of Fig. 3. Along the entire run of the algorithms,
PRank is significantly better than WH, and consistently better than the multiclass
perceptron algorithm, although the latter employs a bigger hypothesis.

Finally, we have also evaluated the performance of PRank in a batch setting, using
the experimental setup of [5]. In this experiment, we ran PRank over the training
data as an online algorithm and used its last hypothesis to rank unseen test data.
Here as well PRank came out first, outperforming all the algorithms described in [5].

Acknowledgments Thanks to Sanjoy Dagupta and Rob Schapire for numerous
discussions on ranking problems and algorithms. Thanks also to Eleazar Eskin and
Uri Maoz for carefully reading the manuscript.

References

[1] William W. Cohen, Robert E. Schapire, and Yoram Singer. Learning to order things.
Journal of Artificial Intelligence Research, 10:243- 270, 1999.

[2] K. Crammer and Y. Singer. Ultraconservative online algorithms for multiclass prob­
lems. Proc. of the Fourteenth Annual ConI on Computational Learning Theory, 200l.

[3] Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer. An efficient boosting algorithm for
combining preferences. Machine Learning: Proc. of the Fifteenth Inti . ConI, 1998.

[4] Y. Freund and R. E. Schapire. Large margin classification using the perceptron algo­
rithm. Machine Learning, 37(3): 277-296, 1999.

[5] R. Herbrich, T. Graepel, and K. Obermayer. Large margin rank boundaries for ordinal
regression. Advances in Large Margin Classifiers. MIT Press, 2000.

[6] J. Kemeny and J . Snell. Mathematical Models in the Social Sciences. MIT Press, 1962.

[7] Paul McJones. EachMovie collaborative filtering data set. DEC Systems Research
Center, 1997. http://www.research.digital.com/SRC/eachmoviej.

[8] Vladimir N. Vapnik. Statistical Learning Theory. Wiley, 1998.

[9] Bernard Widrow and Marcian E. Hoff. Adaptive switching circuits. 1960 IRE
WESCON Convention Record, 1960. Reprinted in Neurocomputing (MIT Press, 1988) .

