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Abstract

We present a probabilistic generative model for timing deviations
in expressive music. performance. The structure of the proposed
model is equivalent to a switching state space model. We formu­
late two well known music recognition problems, namely tempo
tracking and automatic transcription (rhythm quantization) as fil­
tering and maximum a posteriori (MAP) state estimation tasks.
The inferences are carried out using sequential Monte Carlo in­
tegration (particle filtering) techniques. For this purpose, we have
derived a novel Viterbi algorithm for Rao-Blackwellized particle fil­
ters, where a subset of the hidden variables is integrated out. The
resulting model is suitable for realtime tempo tracking and tran­
scription and hence useful in a number of music applications such
as adaptive automatic accompaniment and score typesetting.

1 Introduction

Automatic music transcription refers to extraction of a high level description from
musical performance, for example in form of a music notation. Music notation can
be viewed as a list of the pitch levels and corresponding timestamps.

Ideally, one would like to recover a score directly frOID: sound. Such a representation
of the surface structure of music would be very useful in music information retrieval
(Music-IR) and content description of musical material in large audio databases.
However, when operating on sampled audio data from polyphonic acoustical signals,
extraction of a score-like description is a very challenging auditory scene analysis
task [13].

In this paper, we focus on a subproblem in music-ir, where we assume that exact
timing information of notes is available, for example as a stream of MIDI! events

1 Musical Instruments Digital Interface. A standard communication protocol especially
designed for digital instruments such as keyboards. Each time a key is pressed, a MIDI
keyboard generates a short message containing pitch and key velocity. A computer can tag
each received message by a timestamp for real-time processing and/or "recording" into a
file.



from a digital keyboard.

A model for tempo tracking and transcription is useful in a broad spectrum of ap­
plications. One example is automatic score typesetting, the musical analog of word
processing. Almost all score typesetting applications provide a means of automatic
generation of a conventional music notation from MIDI data.

In conventional music notation, onset time of each note is implicitly represented
by the cumulative sum of durations of previous notes. Durations are encoded by
simple rational numbers (e.q. quarter note, eight note), consequently all events in
music are placed on a discrete grid. So the basic task in MIDI transcription is to
associate discrete grid locations with onsets, Le. quantization.

However, unless the music is performed with mechanical precision, identification of
the correct association becomes difficult. Consequently resulting scores have often
very poor quality. This is due to the fact that musicians introduce intentional (and
unintentional) deviations from a mechanical prescription. For example timing of
events can be deliberately delayed or pushed. Moreover, the tempo can fluctuate
by slowing down or accelerating. In fact, such deviations are natural aspects of
expressive performance; in the absence of these, music tends to sound rather dull.

Robust and fast quantization and tempo tracking is also an important requirement
in interactive performance systems. These are emerging applications that "listen"
to the performance for generating an accompaniment or improvisation in real time
[10, 12]. At last, such models are also useful in musicology for systematic study and
characterization of express~ve timing by principled analysis of existing performance
data.

2 Model

Consider the following generative model for timing deviations in music

Ck Ck-1 + "/k-1 (1)
Wk Wk-1 + (k (2)

Tk Tk-1 + 2Wk
(Ck - Ck-1) (3)

'Yk Tk +€k (4)

In Eq. 1, Ck denotes the grid location of k'th onset in a score. The interval between
two consecutive onsets in the score is denoted by "/k-1 . .For example consider the
notation j n which encodes ,,/1:3 == [1 0.5 0.5], hence C1:4 == [0 1 1.5 2]. We
assign a prior of form p(Ck) ex exp(-d(Ck)) where d(Ck) is the number of significant
digits in the binary expansion of the fraction of Ck [1]. One can check that such a
prior prefers simpler notations, e.g. p( J]~ITJ ) < p( j n ). We note that Ck are
drawn from an infinite (but discrete) set and are increasing in k, i.e Ck 2:: Ck-1. To
allow for different time signatures and alternative rhythmic subdivisions, one can
introduce additional hidden variables [1], but this is not addressed in this paper.

Eq. 2 defines a prior over possible tempo deviations. We denote the logarithm of
the period (inverse tempo) by w. For example if the tempo is 60 beats per minute
(bpm), w == log 1sec == O. Since tempo appears as a scale variable in mapping grid
locations on a score to the actual performance time, we have chosen to represent it
in the logarithmic scale (eventually a gamma distribution can also be used). This
representation is both perceptually plausible and mathematically convenient since a
symmetric noise model on w assigns equal probabilities to equal relative c~anges in
tempo. We take (k to be a Gaussian random variable with N(O, A2'kQ). Depending



upon the interval between consecutive onsets, the model scales the noise covariance;
longer jumps in the score allow for more freedom in fluctuating the tempo. Given
the W sequence, Eq. 3 defines a model of noiseless onsets with variable tempo. We
will denote the pair of hidden continuous variables by Zk == (Tk' Wk).

Eq. 4 defines the observation model. Here Yk is the observed onset time of the
k'th onset in the performance. The noise term tk models small scale expressive
deviations in timing of individual notes and has a Gaussian distribution parame­
terized by N(tt("(k-l), "E("(k-l)).Such a parameterization is useful for appropriate
quantization of phrases (short sequences of notes) that are shifted or delayed as a
whole [1].

ill reality, a random walk model for tempo such as in Eq. 2 is not very realistic.
Tempo deviations are usually more smooth. ill the dynamical model framework
such smooth deviations can be allowed by increasing the dimensionality of W by
include higher order "inertia" variables [2]. ill this case we simply rewrite Eq. 2 as

Wk == AWk-l + (k

and take a diagonal Q. Accordingly, the observation model (Eq. 4) changed such
that Wk is replaced by CWk where C == [1 0 ... 0].

The graphical model is shown in Figure 1. The model is similar to a switching
state space model, that has been recently applied in the context of music tran­
scription [11]. The differences are in parameterization and more importantly in the
inference method.

Figure 1: Graphical Model. The pair of continuous hidden variables (Tk' Wk) is
denoted by Zk. Both C and Z are hidden; only the onsets Y are observed.

We define tempo tracking as a filtering problem

== argmax LP(Ck,ZkIYl:k)
Zk

and rhythm transcription as a MAP state estimation problem

argmaxp(Cl:KIY1:K)
Cl:K

(5)

(6)

p(Cl:K IY1:K) (7)

The exact computation of the quantities in Eq. 6 and Eq. 5 is intractable due to
the explosion in the number of mixture components required to represent the exact
posterior at each step k. Consequently we will use Monte Carlo approximation
techniques.



(9)

3 Sequential Monte Carlo Sampling

Sequential Monte Carlo sampling (a.k.a. particle filtering) is an integration method
especially powerful for inference in dynamical systems. See [4] for a detailed review
of state of the art. At each step k, the exact marginal posterior over hidden states
Xk is approximated by an empirical distribution of form

N

p(Xk IY1:k) ~ L wii ) <5(Xk - x~i)) (8)
i==l

where x~i) are a set of points obtained by sampling from a proposal distribution

and wii ) are associated importance weights such that 2::::1 wii ) == 1. Particles
at step k are evolved to k + 1 by sequential importance sampling and resampling
methods [6]. Once a set of discrete sample points is obtained during the forward
phase by sampling, particle approximations to quantities such as the smoothed
marginal posterior p(Xk IYl:K) or the maximum a posteriori state sequence (Viterbi
path) xr:K can be obtained efficiently. Due to the discrete nature of the approximate
representation, resulting algorithms are closely related to standard smoothing and
Viterbi algorithms in Hidden Markov models [9, 7, 6].

Unfortunately, if the hidden state space is of high dimensionality, sampling can be
inefficient. Hence increasingly many particles are needed to accurately represent the
posterior. Consequently, the estimation of "off-line" quantities such as p(Xk IY1:K)
and x~:K becomes very costly since one has to store all past trajectories.

For some models, including the one proposed here, one can identify substructures
where integrations, conditioned on certain nodes can be computed analytically [5].
Conditioned on C1:k, the model reduces to the (extended) 2 Kalman filter. In this
case the joint marginal posterior is represented as a mixture

N
"""" (i) (i) (i)p(Ck' Zk IY1:k) ~ L...J W k p(Zk ICk ,Y1:k)<5(Ck - Ck )
i==l

The particular case of Gaussian p(Zk Icii ) ,Y1:k) is extensively used in diverse appli­
cations [8] and reported to give superior results when compared to standard particle
filtering [3, 6].

3.1 Particle Filtering

We assume that we have obtained a set- of particles from filtered posterior p(Ck IY1:k).
Due to lack of space we do not give the details of the particle filtering algorithm
but refer the reader to [6]. One important point to note is that we have to use the
optimal proposal distribution given as

p(cklc~i~l' Y1:k) oc JdZk- 1:k p(Yklzk' Ck, c~i~l)
C) C)p(Zk' Ck IZk-1, ck~_1)P(Zk-1Ick~_1'Y1:k-1) (10)

Since the state-space of Ck is effectively infinite, this step is crucial for efficiency.
Evaluation of the proposal distribution amounts to looking forward and selecting
a set of high probability candidate grid locations for quantization. Once cii ) are
obtained we can use standard Kalman filtering algorithms to update the Gaussian
potentials p(zklcii) ,Y1:k). Thus tempo tracking problem as stated in Eq. 5 is ~eadily
solved.

2We linearize the nonlinear observation model 2Wk (en - Ck-l) around the expectation
(Wk).



3.2 Modified Viterbi algorithlll

The quantization problem in Eq. 6 can only be solved approximately. Since Z

is integrated over, in general all Ck become coupled and the Markov property is
lost, i.e. p(Cl:K IYl:K) is in general not a chain. One possible approximation, that
we adapt also here, is to assume smoothed estimates are not much different from
filtered estimates [8] i.e.

p(Ck' zklck-l, Zk-l, Yl:K) ~ p(Ck' zklck-l, Zk-1, Yl:k) (11)

and to write
K

p(Cl:KIYl:K) R:j f dZ1:KP(CIZIIYl) P(Ck,Zkh-l,Zk-l,Yl:k)
k==2

K

<X rdZ1:KP(YIIZl, Cl)p(Zl, Cl) p(Yk IZk, ck, Ck-l)p(Zk, Ck, IZk-l, Ck-l)
v k==2

IT we plug in the mixture approximation in Eq. 9 and take the argmaxlog on both
sides we obtain a sum that can be stepwise optimized using the Viterbi algorithm [9J.

The standard Viterbi algorithm for particle filters [7] defines a transition ma­

trix Tk - 1 == f(c~) IC~i~l) between each pair of particles at consecutive time slices.
Here, f is a state transition distribution that can be evaluated pointwise and
Tk - 1 can be computed on the fly by evaluating f at (c~), c~i~l)' In contrast,
the modified Viterbi algorithm replaces the pointwise evaluation by an expec-
tation under p(Zk' Zk-llc~) , c~i~l' Yl:k) where the transition matrix is defined as

Tk- 1(j, i) == p(c~) Ic~i~l'Yl:k). In this case, each entry of T is computed by one step
Kalman likelihood evaluation.

1. Initialization. For i == 1 : N

~1 (i) == logp(cii)) + IOgp(Yllci
i
))

2. Recursion. For j == 1 : N, k == 2 : K

Tk- 1(j, i) logp(c~) Icii~l' Y1:k) (See Eq. 10)

~k(j) m?X{dk-l (i) + Tk-1 (j, i) }
~

'l/Jk(j) arg m?X{~k-1 (i) + Tk-l (j, i)}
~

3. Termination.

rK argm9X~K(i)
~

4. Backtracking. For k == K - 1 : -1 : 1

rk 'l/Jk+1 (rk+l)

ck == cirk )

Since the tempo trajectories can be integrated out online, we need to only store
the links '¢k and quantization locations cii ). Consequently, the random walk tempo
prior can be replaced by a richer model as in Eq. 5, virtually without additional
computational or storage cost. Ail outline of the algorithm is shown in Figure 2.
Of course, the efficiency and accuracy of our approach depends heavily onto the
assumption in Eq. 11, that the T matrix based on filtered estimates is accurate.
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Figure 2: Outline of the algorithm. Left: forward filtering phase. The ellipses
correspond to the conditionals p(zklcin) ,Yl:k). Vertical dotted lines denote the ob­
servations Yk. At each step k, particles with low likelihood are discarded. Surviving
particles are linked to their parents. Right: The transition matrix Tk - 1 between
each generation (forall pairs of c~) ,cii~l) is computed by standard Kalman filter
likelihood equations. Note that Tk - 1 can be discarded once the forward messages
~k are computed and only the backward links 'l/Jl:K and corresponding Ck' need to
be stored. When all onsets Yl:K are observed, the MAP sequence ci:K is computed
by backtracking.

4 Simulation Results

We have tested tempo tracking and quantization performance of the model on
two different examples. The first example is a repeating "son-clave" pattern

I/:! j j ! /J .J. j :11 (c == [1 2 4 5.5 7 ... ]) with fluctuating tempo 3. Such
syncopated rhythms are usually hard to transcribe and make it difficult to track
the tempo even for experienced human listeners. Moreover, since onsets are absent
at prominent beat locations, standard beat tracking algorithms usually loose track.

We observe' that for various realistic tempo fluctuations and observation noise level,
the particle. filter is able to identify the correct tempo trajectory and the corre­
sponding quantization (Figure 3, above).

The second example is a piano arrangement of the Beatles song (Yesterday) per­
formed by a professional classical pianist on a MIDI grand piano. This is a poly­
phonic piece, Le. the arrangement contains chords and events occurring at the same
time. We model polyphony by allowing Ck -Ck-l == O. In this case, since the original
arrangement is known, we estimate the true tempo trajectory by Kalman filtering
after clamping Cl:K. As shown in Figure 3, the particle filter estimate and the true
tempo trajectory are almost identical.

5 Discussion and Conclusion

There are several advantages offered by particle filtering approach. The algorithm
is suitable for real time implementation. Since the implementation is easy, this pro­
vides an important flexibility in the models one can employ. Although we have not

3We modulate the tempo deterministically according to Wk = 0.3 sin(27rck/32). The
observation noise variance is R = 0.0005.
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Figure 3: Above: Tempo tracking results for the clave pattern with 4 particles. Each
circle denotes the mean (T~n), w~n)). The diameter of each particle is proportional to the
normalized importance weight at each generation. '*' denote the true (T, w) pairs. Below:
Tracking results for "Yesterday". '*' denote the mean of the filtered Zl:K after clamping
to true Cl:K. Small circles denote the mean Zl:K corresponding to the estimated MAP
trajectory Cr:K using 10 particles.



addressed issues such as learning and online adaptation in this- paper, parameters
of the model can also treated as hidden variables and can be eventually integrated
out similar to the tempo trajectories.

Especially in real time music applications fine tuning and careful allocation of com­
putational resources is of primary importance. Particle filtering is suitable since one
can simply reduce the number of particles when computational resources become
overloaded.

Motivated by the advantages of the particle filtering approach, we are currently
working on a real time implementation of the particle filter based tempo tracker for
eventual automatic' accompaniment generation such as an adaptive drum machine.
Consequently, the music is quantized such that it can be typeset in a notation
program.
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