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Abstract

We present a powerful meta-clustering technique called Iterative Dou-
ble Clustering (IDC). The IDC method is a natural extension of the
recent Double Clustering (DC) method of Slonim and Tishby that ex-
hibited impressive performance on text categorization tasks [12]. Us-
ing synthetically generated data we empirically find that whenever the
DC procedure is successful in recovering some of the structure hidden
in the data, the extended IDC procedure can incrementally compute
a significantly more accurate classification. IDC is especially advan-
tageous when the data exhibits high attribute noise. Our simulation
results also show the effectiveness of IDC in text categorization prob-
lems. Surprisingly, this unsupervised procedure can be competitive
with a (supervised) SVM trained with a small training set. Finally,
we propose a simple and natural extension of IDC for semi-supervised
and transductive learning where we are given both labeled and unla-
beled examples.

1 Introduction

Data clustering is a fundamental and challenging routine in information processing
and pattern recognition. Informally, when we cluster a set of elements we attempt
to partition it into subsets such that points in the same subset are more “similar” to
each other than to points in other subsets. Typical clustering algorithms depend on a
choice of a similarity measure between data points [6], and a “correct” clustering result
depends on an appropriate choice of a similarity measure. However, the choice of a
“correct” measure is an ill-defined task without a particular application at hand. For
instance, consider a hypothetical data set containing articles by each of two authors
such that half of the articles authored by each author discusses one topic, and the
other half discusses another topic. There are two possible dichotomies of the data
which could yield two different bi-partitions: one according to topic, and another,
according to writing style. When asked to cluster this set into two sub-clusters, one
cannot successfully achieve the task without knowing the goal: Are we interested in
clusters that reflect writing style or semantics? Therefore, without a suitable target at



hand and a principled method for choosing a similarity measure suitable for the target,
it can be meaningless to interpret clustering results.

The information bottleneck (IB) method of Tishby, Pereira and Bialek [8] is a recent
framework that can sometimes provide an elegant solution to this problematic “metric
selection” aspect of data clustering (see Section 2). The original IB method generates
a soft clustering assignments for the data. In [10], Slonim and Tishby developed a sim-
plified “hard” variant of the IB clustering, where there is a hard assignment of points
to their clusters. Employing this hard IB clustering, the same authors introduced an
effective two-stage clustering procedure called Double Clustering (DC) [12]. An exper-
imental study of DC on text categorization tasks [12] showed a consistent advantage
of DC over other clustering methods. A striking finding in [12] is that DC sometimes
even attained results close to those of supervised learning.*

In this paper we present a powerful extension of the DC procedure which we term
Iterative Double Clustering (IDC). IDC performs iterations of DC and whenever the
first DC iteration succeeds in extracting a meaningful structure of the data, a num-
ber of the next consecutive iterations can continually improve the clustering quality.
This continual improvement achieved by IDC is due to generation of progressively less
noisy data representations which reduce variance. Using synthetically generated data,
we study some properties of IDC. Not only that IDC can dramatically outperform
DC whenever the data is noisy, our experiments indicate that IDC attains impressive
categorization results on text categorization tasks. In particular, we show that our
unsupervised IDC procedure is competitive with an SVM (and Naive Bayes) trained
over a small sized training set. We also propose a natural extension of IDC for trans-
ductive semi-supervised transductive. Our preliminary empirical results indicate that
our transductive IDC can yield effective text categorization.

2 Information Bottleneck and Double Clustering

We consider a data set X of elements, each of which is a d-dimensional vector over
a set F' of features. We focus on the case where feature values are non-negative real
numbers. For every element © = (f1,..., f4) € X we consider the empirical conditional

distribution {p(f;|z)} of features given x, where p(f;|x) = f;/ 2?21 fi. For instance,
X can be a set of documents, each of which is represented as a vector of word-features
where f; is the frequency of the ith word (in some fixed word enumeration). Thus,
we represent each element as a distribution over its features, and are interested in a
partition of the data based on these feature conditional distributions. Given a prede-
termined number of clusters, a straightforward approach to cluster the data using the
above “distributional representation” would be to choose some (dis)similarity measure
for distributions (e.g. based on some L, norm or some statistical measure such as the
KL-divergence) and employ some “plug-in” clustering algorithm based on this measure
(e.g. agglomerative algorithms). Perhaps due to feature noise, this simplistic approach
can result in mediocre results (see e.g. [12]).

Suppose that our data is given via observations of a random variable S. In the infor-
mation bottleneck (IB) method of Tishby et al. [8] we attempt to extract the essence
of the data S using co-occurrence observations of S together with a target variable
T. The goal is to extract a compressed representation S of S with minimum compro-
mise of information content with respect to 1. This way, T can direct us to extract
meaningful clustering from S where the meaning is determined by the target T. Let

I(S,T) = Y esierP(s:t)log p?gf;()t), the mutual information between S and T [3].

19pecifically, the DC method obtained in some cases accuracy close to that obtained by a
naive Bayes classifier trained over a small sized sample [12].



The IB method attempts to compute p(§|s), a “soft” assignment of a data point s to
clusters 3, so as to minimize 1(S, S)—BI(S,T), given the Markov condition T — S — S
(i.e., T and S are conditionally independent given S). Here, 3 is a Lagrange multiplier
that controls a constraint on I(S,T) and thus, the tradeoff between the desired com-
pression level and the predictive power of S with respect to 7. As shown in [8], this
minimization yields a system of coupled equations for the clustering mapping p(5|s)
in terms of the cluster representations p(¢|5) and the cluster weights p(8). The paper
[8] also presents an algorithm similar to deterministic annealing [9] for recovering a
solution for the coupled equations.

Slonim and Tishby [10] proposed a simplified IB approach for the computation of
“hard” cluster assignments. In this hard IB variant, each data point s, represented by
{p(t|s)}+, is associated with one centroid §. They also devised a greedy agglomerative
clustering algorithm that starts with the trivial clustering, where each data point s is a
single cluster; then, at each step, the algorithm merges the two clusters that minimize
the loss of mutual information I(S,T). The reduction in I(S,T) due to a merge of two
clusters 5; and §; is shown to be

(p(5:) + p(5;)) Dus(p(t]5:), p(t|55)], (1)

where, for any two distributions p(x) and ¢(x), with priors A, and Ay, A\p + Ay = 1,
Djslp(x),q(x)] is the Jensen-Shannon divergence (see [7, 4]),

p+q

p+q)
5 .

Dyslp(a), a(@)) = A Dice (pl|52) + Ay Drce (al| P

Here, 229 denotes the distribution (p(z)+¢(z))/2 and D (+||-) is the Kullbak-Leibler
divergence [3]. This agglomerative algorithm is of course only locally optimal, since at
each step it greedily merges the two most similar clusters. Another disadvantage of
this algorithm is its time complexity of O(n?) for a data set of n elements (see [12] for
details).

The IB method can be viewed as a meta-clustering procedure that, given observations
of the variables S and T (via their empirical co-occurrence samples p(s, t)), attempts to
cluster s-elements represented as distributions over t-elements. Using the merging cost
of equation (1) one can approximate IB clustering based on other “plug-in” vectorial
clustering routines applied within the simplex containing the s-elements distributional
representations.

DC [12] is a two-stage procedure where during the first stage we IB-cluster features
represented as distributions over elements, thus generating feature clusters. During
the second stage we IB-cluster elements represented as distributions over the feature
clusters (a more formal description follows). For instance, considering a document
clustering domain, in the first stage we cluster words as distributions over documents
to obtain word clusters. Then in the second stage we cluster documents as distributions
over word clusters, to obtain document clusters.

Intuitively, the first stage in DC generates more coarse pseudo features (i.e. feature
centroids), which can reduce noise and sparseness that might be exhibited in the orig-
inal feature values. Then, in the second stage, elements are clustered as distributions
over the “distilled” pseudo features, and therefore can generate more accurate element
clusters. As reported in [12], this DC two-stage procedure outperforms various other
clustering approaches as well as DC variants applied with other dissimilarity measures
(such as the variational distance) different from the optimal JS-divergence of Equa-
tion (1). It is most striking that in some cases, the accuracy achieved by DC was close
to that achieved by a supervised Naive Bayes classifier.



3 Iterative Double Clustering (IDC)

Denote by IBn(T|S) the clustering result, into N clusters, of the IB hard clus-
tering procedure when the data is S and the target variable is T (see Section 2).
For instance, if T' represents documents and S represents words, the application of
IBN(T = documents|S = words) will cluster the words, represented as distributions
over the documents, into N clusters. Using the notation of our problem setup, with X
denoting the data and F' denoting the features, Figure 1 provides a pseudo-code of the
IDC meta-clustering algorithm, which clusters X into /N clusters. Note that the DC
procedure is simply an application of IDC with k& = 1.

The code of Figure 1 requires to specify £, the number of IDC iterations to run, Vg,
the number of element clusters (e.g. the desired number of of document clusters) and
Nz, the number of feature clusters to use during each iteration. In the experiments
reported below we always assumed that we know the correct Ng. Our experiments
show that the algorithm is not too sensitive to an overestimate of Nz. Note that the
choice of these parameters is the usual model order selection problem. Perhaps the first
question regarding k£ (number of iterations) to ask is whether or not IDC converges to
a steady state (e.g. where two consecutive iterations generate identical partitions).
Unfortunately, a theoretical understanding of this convergence issue is left open in this
paper. In most of our experiments IDC converged after a small number of iterations.
In all the experiments reported below we used a fixed k = 15.

The “hard” IB-clustering originally pre-
sented by [12] uses an agglomerative pro-
cedure as its underlying clustering algo-
rithm (see Section 2). The “soft” IB [§]
applies a deterministic annealing clus-
tering [9] as its underlying procedure.
As already discussed, the IB method
can be viewed as meta-clustering which

Input:

X (input data)

N (number of element clusters)

N (number of feature clusters to use)
k (number of iterations)

Initialize: S — F, T «— X

loop {k times}

- . N «— N=
can employ many vectorial clustering - r
routines.  We implemented IDC us- F — IBn(T|S) .
ing several routines including agglom- JY —Ng, S« X, T<F
erative clustering and deterministic an- X «— IBN(T|S)
nealing. Since both these algorithms S—F,T—X
are computationally intensive, we also end loop
implemented IDC using a simple fast Output X

algorithm called Add-C proposed by
Guedalia et al. [5]. Add-C is an online )
greedy clustering algorithm with linear Figure 1: Pseudo-code for IDC
running time and can be viewed as a simple online approximation of k-means. For this
reason, all the results reported below were computed using Add-C (whose description
is omitted, for lack of space, see [5] for details). For obtaining a better approximation
to the IB method we of course used the JS-divergence of (1) as our cost measure.

Following [12] we chose to evaluate the performance of IDC with respect to a labeled
data set. Specifically, we count the number of classification errors made by IDC as
obtained from labeled data.

In order to better understand the properties of IDC, we first examined it within a
controlled setup of synthetically generated data points whose feature values were gen-
erated by d-dimensional Gaussian distributions (for d features) of the form N(u,X),
where ¥ = 021, with ¢ constant. In order to simulate different sources, we assigned
different p values (from a given constant range) to each combination of source and
feature. Specifically, for data simulating m classes and |F| features, |F| x m differ-



ent distributions were selected. We introduced feature noise by distorting each entry
with value v by adding a random sample from N (0, (a - v)?), where « is the “noise
amplitude” (resulting negative values were rounded to zero). In figure 2(a), we plot
the average accuracy of 10 runs of IDC. As can be seen, at low level noise amplitudes
IDC attains perfect accuracy. When the noise amplitude increases, both IDC and DC
deteriorate but the multiple rounds of IDC can better resist the extra noise. After
observing the large accuracy gain between DC and IDC at a specific interval of noise
amplitude within the feature noise setup, we set the noise amplitude to values in that
interval and examined the behavior of the IDC run in more detail. Figure 2(b) shows
a typical trace of the accuracy obtained at each of the 20 iterations of an IDC run over
noisy data. This learning curve shows a quick improvement in accuracy during the first
few rounds, and then reaches a plateau.

Following [12] we used the 20 Newsgroups (NG20) [1] data set to evaluate IDC on real,
labeled data. We chose several subsets of NG20 with various degrees of difficulty. In the
first set of experiments we used the following four newsgroups (denoted as NG4), two
of which deal with sports subjects: ‘rec.sport.baseball’, ‘rec.sport.hockey’, ‘alt.atheism’
and ‘sci.med’. In these experiments we tested some basic properties of IDC. In all the
experiments reported in this section we performed the following preprocessing: We
lowered the case of all letters, filtered out low frequency words which appeared up to
(and including) 3 times in the entire set and filtered out numerical and non-alphabetical
characters. Of course we also stripped off newsgroup headers which contain the class
labels.

In Figure 2(c) we display accuracy vs. number of feature clusters (Nz). The accuracy
deteriorates when N is too small and we see a slight negative trend when it increases.
We performed an additional experiment which tested the performance using very large
numbers of feature clusters. Indeed, these results indicate that after a plateau in the
range of 10-20 there is a minor negative trend in the accuracy level. Thus, with respect
to this data set, the IDC algorithm is not too sensitive to an overestimation of the
number N of feature clusters.

Other experiments over the NG4 data set confirmed the results of [12] that the JS-
divergence dissimilarity measure of Equation (1) outperforms other measures, such as
the variational distance (L; norm), the KL-divergence, the square-Euclidean distance
and the ‘cosine’ distance. Details of all these experiments will be presented in the full
version of the paper.

In the next set of experiments we tested IDC’s performance on the same newsgroup
subsets used in [12]. Table 1(a) compares the accuracy achieved by DC to the the last
(15th) round of IDC with respect to all data sets described in [12]. Results of DC were
taken from [12] where DC is implemented using the agglomerative routine.

Table 1(b) displays a preliminary comparison of IDC with the results of a Naive Bayes
(NB) classifier (reported in [11]) and a support vector machine (SVM). In each of
the 5 experiments the supervised classifiers were trained using 25 documents per class
and tested on 475 documents per class. The input for the unsupervised IDC was 500
unlabeled documents per class. As can be seen, IDC outperforms in this setting both
the naive Bayes learner and the SVM.

4 Learning from Labeled and Unlabeled Examples

In this section, we present a natural extension of IDC for semi-supervised transductive
learning that can utilize both labeled and unlabeled data. In transductive learning, the
testing is done on the unlabeled examples in the training data, while in semi-supervised



| Newsgroup | DC | IDC-15 |

Binaryl 0.70 0.85

Binary2 | 0.68 | 0.83 [ DataSet [[ NB [ SVM [[ IDC-15 [ IDC-1 |
Binary3 0.75 0.80 COMP (5) 0.50 0.51 0.50 0.34
Multidy 0.59 0.86 SCIENCE (4) 0.73 0.68 0.79 0.44
Multibs 0.58 0.88 POLITICS (3) 0.67 0.76 0.78 0.42
Multibs 0.53 0.86 RELIGION (3) 0.55 0.78 0.60 0.38
Multil0, 0.35 0.56 SPORT (2) 0.75 0.78 0.89 0.76
Multi102 0.35 0.49 [ Average J[0.64] 0.70 [ 0.71 [ 0.47 |
MultilOs 0.35 0.55

Average 0.54 0.74

Table 1: Left: Accuracy of DC vs. IDC on most of the data sets described in [12]. DC
results are taken from [12]; Right: Accuracy of Naive Bayes (NB) and SVM classifiers vs.
IDC on some of the data sets described in [11]. The IDC-15 column shows final accuracy
achieved at iteration 15 of IDC; the IDC-1 column shows first iteration accuracy. The NB
results are taken from [11]. The SVM results were produced using the LibSVM package [2]
with its default parameters. In all cases the SVM was trained and tested using the same
training/test set sizes as described in [11] (25 documents per newsgroup for training and 475
for testing; the number of unlabeled documents fed to IDC was 500 per newsgroup). The
number of newsgroups in each hyper-category is specified in parenthesis (e.g. COMP contains
5 newsgroups).

inductive learning it is done on previously unseen data. Here we only deal with the
transductive case. In the full version of the paper we will present a semi-supervised
inductive learning version of IDC.

For motivating the transductive IDC, consider a data set X that has emerged from a
statistical mixture which includes several sources (classes). Let C' be a random variable
indicating the class of a random point. During the first iteration of a standard IDC we
cluster the features F so as to preserve I(F, X). Typically, X contains predictive infor-
mation about the classes C. In cases where I(X, () is sufficiently large, we expect that
the feature clusters F' will preserve some information about C' as well. Having available
some labeled data points, we may attempt to generate feature clusters F' which pre-
serve more information about class labels. This leads to the following straightforward
idea. During the first IB-stage of the IDC first iteration, we cluster the features F' as
distributions over class labels (given by the labeled data). This phase results in feature

clusters F. Then we continue as usual; that is, in the second IB-phase of the first IDC

iteration we cluster X, represented as distributions over F. Subsequent IDC iterations
use all the unlabeled data.

In Figure 2(d) we show the accuracy obtained by DC and IDC in categorizing 5 news-
groups as a function of the training (labeled) set size. For instance, we see that when
the algorithm has 10 documents available from each class it can categorize the entire
unlabeled set, containing 90 unlabeled documents in each of the classes, with accuracy
of about 80%. The benchmark accuracy of IDC with no labeled examples obtained
about 73%.

In Figure 2(e) we see the accuracy obtained by DC and transductive IDC trained with
a constant set of 50 labeled documents, on different unlabeled (test) sample sizes. The
graph shows that the accuracy of DC significantly degrades, while IDC manages to
sustain an almost constant high accuracy.



5 Concluding Remarks

Our contribution is threefold. First, we present a natural extension of the successful
double clustering algorithm of [12]. Empirical evidence indicates that our new iterative
DC algorithm has distinct advantages over DC, especially in noisy settings. Second,
we applied the unsupervised IDC on text categorization problems which are typically
dealt with by supervised learning algorithms. Our results indicate that it is possible to
achieve performance competitive to supervised classifiers that were trained over small
samples. Finally, we present a natural extension of IDC that allows for transductive
learning. Our preliminary empirical evaluation of this scheme over text categorization
appears to be promising.

A number of interesting questions are left for future research. First, it would be of
interest to gain better theoretical understanding of several issues: the generalization
properties of DC and IDC, the convergence of IDC to a steady state and precise condi-
tions on attribute noise settings within which IDC is advantageous. Second, it would
be important to test the empirical performance of IDC with respect to different prob-
lem domains. Finally, we believe it would be of great interest to better understand and
characterize the performance of transductive IDC in settings having both labeled and
unlabeled data.
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Figure 2: (a) Average accuracy over 10 trials for different amplitudes of proportional feature
noise. Data set: A synthetically generated sample of 200 500-dimensional elements in 4
classes. (b) A trace of a single IDC run. The z-axis is the number of IDC iterations and
the y-axis is accuracy achieved in each iteration. Data set: Synthetically generated sample of
500, 400-dimensional elements in 5 classes; Noise: Proportional feature noise with o = 1.0;
(c) Average accuracy (10 trials) for different numbers of feature clusters. Data set: NG4. (d)
Average accuracy of (10 trials of) transductive categorization of 5 newsgroups. Sample size:
80 documents per class, X-axis is training set size. Upper curve shows trans. IDC-15 and
lower curve is trans. IDC-1. (e) Average accuracy of (10 trials of) transductive categorization
of 5 newsgroups. Sample size: constant training set size of 50 documents from each class.
The z-axis counts the number of unlabeled samples to be categorized. Upper curve is trans.
IDC-15 and lower curve is trans. IDC-1. Each error bar (in all graphs) specifies one std.




