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Abstract

Spike-triggered averaging techniques are effective for linear characteri-
zation of neural responses. But neurons exhibit important nonlinear be-
haviors, such as gain control, that are not captured by such analyses.
We describe a spike-triggered covariance method for retrieving suppres-
sive components of the gain control signal in a neuron. We demonstrate
the method in simulation and on retinal ganglion cell data. Analysis
of physiological data reveals significant suppressive axes and explains
neural nonlinearities. This method should be applicable to other sensory
areas and modalities.

White noise analysis has emerged as a powerful technique for characterizing response prop-
erties of spiking neurons. A sequence of stimuli are drawn randomly from an ensemble and
presented in rapid succession, and one examines the subset that elicit action potentials. This
“spike-triggered” stimulus ensemble can provide information about the neuron’s response
characteristics. In the most widely used form of this analysis, one estimates an excitatory
linear kernel by computing the spike-triggered average (STA); that is, the mean stimulus
that elicited a spike [e.g., 1, 2]. Under the assumption that spikes are generated by a
Poisson process with instantaneous rate determined by linear projection onto a kernel fol-
lowed by a static nonlinearity, the STA provides an unbiased estimate of this kernel [3].
Recently, a number of authors have developed interesting extensions of white noise anal-
ysis. Some have examined spike-triggered averages in a reduced linear subspace of input
stimuli [e.g., 4]. Others have recovered excitatory subspaces, by computing the spike-
triggered covariance (STC), followed by an eigenvector analysis to determine the subspace
axes [e.g., 5, 6].

Sensory neurons exhibit striking nonlinear behaviors that are not explained by fundamen-
tally linear mechanisms. For example, the response of a neuron typically saturates for large
amplitude stimuli; the response to the optimal stimulus is often suppressed by the presence
of a non-optimal mask [e.g., 7]; and the kernel recovered from STA analysis may change
shape as a function of stimulus amplitude [e.g., 8, 9]. A variety of these nonlinear behav-
iors can be attributed to gain control [e.g., 8, 10, 11, 12, 13, 14], in which neural responses
are suppressively modulated by a gain signal derived from the stimulus. Although the un-
derlying mechanisms and time scales associated with such gain control are current topics
of research, the basic functional properties appear to be ubiquitous, occurring throughout
the nervous system.
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Figure 1: Geometric depiction of spike-triggered analyses. a, Spike-triggered averaging
with two-dimensional stimuli. Black points indicate raw stimuli. White points indicate stim-
uli eliciting a spike, and the STA (black vector), which provides an estimate of

����
, corre-

sponds to their center of mass. b, Spike-triggered covariance analysis of suppressive axes.
Shown are a set of stimuli lying on a plane perpendicular to the excitatory kernel,

�� �
. Within

the plane, stimuli eliciting a spike are concentrated in an elliptical region. The minor axis of
the ellipse corresponds to a suppressive stimulus direction: stimuli with a significant compo-
nent along this axis are less likely to elicit spikes. The stimulus component along the major
axis of the ellipse has no influence on spiking.

Here we develop a white noise methodology for characterizing a neuron with gain control.
We show that a set of suppressive kernels may be recovered by finding the eigenvectors of
the spike-triggered covariance matrix associated with smallest variance. We apply the tech-
nique to electrophysiological data obtained from ganglion cells in salamander and macaque
retina, and recover a set of axes that are shown to reduce responses in the neuron. More-
over, when we fit a gain control model to the data using a maximum likelihood procedure
within this subspace, the model accounts for changes in the STA as a function of contrast.

1 Characterizing suppressive axes

As in all white noise approaches, we assume that stimuli correspond to vectors, �� , in some
finite-dimensional space (e.g., a neighborhood of pixels or an interval of time samples).
We assume a gain control model in which the probability of a stimulus eliciting a spike
grows monotonically with the halfwave-rectified projection onto an excitatory linear kernel,� ��	��
 ��
� , and is suppressively modulated by the fullwave-rectified projection onto a set of
linear kernels, � ��	��
 �� � .
First, we recover the excitatory kernel, �� � . This is achieved by presenting spherically sym-
metric input stimuli (e.g., Gaussian white noise) to the neuron and computing the STA
(Fig. 1a). STA correctly recovers the excitatory kernel, under the assumption that each
of the gain control kernels are orthogonal (or equal) to the excitatory kernel. The proof
is essentially the same as that given for recovering the kernel of a linear model followed
by a monotonic nonlinearity [3]. In particular, any stimulus can be decomposed into a
component in the direction of the excitatory kernel, and a component in a perpendicular
direction. This can be paired with another stimulus that is identical, except that its compo-
nent in the perpendicular direction is negated. The two stimuli are equally likely to occur
in a spherically Gaussian stimulus set (since they are equidistant from the origin), and they
are equally likely to elicit a spike (since their excitatory components are equal, and their
rectified perpendicular components are equal). Their vector average lies in the direction of
the excitatory kernel. Thus, the STA (which is an average over all such stimuli, or all such
stimulus pairs) must also lie in that direction. In a subsequent section we explain how to
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Figure 2: Estimation of kernels from a simulated model (equation 2). Left: Model kernels.
Right: Sorted eigenvalues of covariance matrix of stimuli eliciting spikes (STC). Five eigen-
values fall significantly below the others. Middle: STA (excitatory kernel) and eigenvectors
(suppressive kernels) associated with the lowest eigenvalues.

recover the excitatory kernel when it is not orthogonal to the suppressive kernels.

Next, we recover the suppressive subspace, assuming the excitatory kernel is known. Con-
sider the stimuli lying on a plane perpendicular to this kernel. These stimuli all elicit the
same response in the excitatory kernel, but they may produce different amounts of suppres-
sion. Figure 1b illustrates the behavior in a three-dimensional stimulus space, in which one
axis is assumed to be suppressive. The distribution of raw stimuli on the plane is spheri-
cally symmetric about the origin. But the distribution of stimuli eliciting a spike is narrower
along the suppressive direction: these stimuli have a component along the suppressive axis
and are therefore less likely to elicit a spike. This behavior is easily generalized from this
plane to the entire stimulus space. If we assume that the suppressive axes are fixed, then
we expect to see reductions in variance in the same directions for any level of numerator
excitation.

Given this behavior of the spike-triggered stimulus ensemble, we can recover the suppres-
sive subspace using principal component analysis. We construct the sample covariance
matrix of the stimuli eliciting a spike:

��� ������ �
	

����
�� ��� �

� ������ (1)

where
� �

is the number of spikes. To ensure the estimated suppressive subspace is or-
thogonal to the estimated �� � (as in Figure 1b), the stimuli �������� ��� are first projected onto the
subspace perpendicular to the estimated ��	� . The principal axes (eigenvectors) of

�
that are

associated with small variance (eigenvalues) correspond to directions in which the response
of the neuron is modulated suppressively.

We illustrate the technique on simulated data for a neuron with a spatio-temporal receptive
field. The kernels are a set of orthogonal bandpass filters. The stimulus vectors �� of this
input sequence are defined over a 18-sample spatial region and a 18-sample time window
(i.e., a �! #" -dimensional space). Spikes are generated using a Poisson process with mean
rate determined by a specific form of gain control [14]:

$&% ��')( �+* � ��-, �
� �� � 
 �� ��./ �10 � � �� ��
 �� � .1243 .65 (2)

The goal of simulation is to recover excitatory kernel �� � , the suppressive subspace spanned
by ��	� , weights 0 � , and constant 3 .
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Figure 3: Left: Retrieved kernels from STA and STC analysis of ganglion cell data from a
salamander retina (cell 1999-11-12-B6A). Right: sorted eigenvalues of the spike-triggered
covariance matrix, with corresponding eigenvectors. Low eigenvalues correspond to suppres-
sive directions, while other eigenvalues correspond to arbitrary (ignored) directions. Raw
stimulus ensemble was sphered (whitened) prior to analysis and low-variance axes under-
represented in stimulus set were discarded.

Figure 2 shows the original and estimated kernels for a model simulation with 600K input
samples and 36.98K spikes. First, we note that STA recovers an accurate estimate of the
excitatory kernel. Next, consider the sorted eigenvalues of

�
, as plotted in Figure 2. The

majority of the eigenvalues descend gradually (the covariance matrix of the white noise
source should have constant eigenvalues, but remember that those in Figure 2 are computed
from a finite set of samples). The last five eigenvalues are significantly below the values
one would obtain with randomly selected stimulus subsets. The eigenvectors associated
with these lowest eigenvalues span approximately the same subspace as the suppressive
kernels. Note that some eigenvectors correspond to mixtures of the original suppressive
kernels, due to non-uniqueness of the eigenvector decomposition. In contrast, eigenvectors
corresponding to eigenvalues in the gradually-descending region appear arbitrary in their
structure.

Finally, we can recover the scalar parameters of this specific model ( 0 � and 3 ) by selecting
them to maximize the likelihood of the spike data according to equation (2). Note that a
direct maximum likelihood solution on the raw data would have been impractical due to
the high dimensionality of the stimulus space.

2 Suppressive Axes in Retinal Ganglion Cells

Retinal ganglion cells exhibit rapid [8, 15] as well as slow [9, 16, 17] gain control. We now
demonstrate that we can recover a rapid gain control signal by applying the method to data
from salamander retina [9]. The input sequence consists of 80K time samples of full-field
33Hz flickering binary white noise (contrast 8.5%). The stimulus vectors �� of this sequence
are defined over a 60-segment time window. Since stimuli are finite in number and binary,
they are not spherically distributed. To correct for this, we discard low-variance axes and
whiten the stimuli within the remaining axes.

Figure 3 depicts the kernels estimated from the 623 stimulus vectors eliciting spikes. Sim-
ilar to the model simulation, the eigenvalues gradually fall off, but four of the eigenvalues
appear to drop significantly below the rest. To make this more concrete, we test the hy-
pothesis that the majority of the eigenvalues are consistent with those of randomly selected
stimulus vectors, but that the last " eigenvalues fall significantly below this range. Specif-
ically, we perform a Monte Carlo simulation, drawing (with replacement) random subsets
of 623 stimuli from the full set of raw stimuli. We also randomly select " (orthogonal)
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Figure 4: Scatter plots from salamander ganglion cell data (cell 1999-11-12-B6A). Black
points indicate the raw stimulus set. White points indicate stimuli eliciting a spike. a, Pro-
jection of stimuli onto estimated excitatory kernel vs. arbitrary kernel. b, Projection of
stimuli onto an estimated suppressive kernel vs. arbitrary kernel.

axes, representing a suppressive subspace, and project this subspace out of the set of ran-
domly chosen stimuli. We then compute the eigenvalues of the sample covariance matrix
of these stimuli. We repeat this ������� times, and estimate a 95 percent confidence interval
for each of the eigenvalues. The figure shows that the first eigenvalues lie within the confi-
dence interval. In practice, we repeat this process in a nested fashion, assuming initially no
directions are significantly suppressive, then one direction, and so on up to four directions.

These low eigenvalues correspond to eigenvectors that are concentrated in recent time (as is
the estimated excitatory kernel). The remaining eigenvectors appear to be arbitrary, span-
ning the full temporal window. We emphasize that these kernels should not be interpreted
to correspond to receptive fields of individual neurons underlying the suppressive signal,
but merely provide an orthogonal basis for a suppressive subspace.

We can now verify that the recovered STA axis is in fact excitatory, and the kernels corre-
sponding to the lowest eigenvalues are suppressive. Figure 4a shows a scatter plot of the
stimuli projected onto the excitatory axis vs. an arbitrary axis. Spikes are seen to occur
only when the component along the excitatory axis is high, as expected. Figure 4b is a
scatter plot of the stimuli projected onto one of the suppressive axes vs. an arbitrary (ig-
nored) axis. The spiking stimuli lie within an ellipse, with the minor axis corresponding to
the suppressive kernel. This is exactly what we would expect in a suppressive gain control
system (see Figure 1b).

Figure 5 illustrates recovery of a two-dimensional suppressive subspace for a macaque reti-
nal ganglion cell. The subspace was computed from the 36.43K stimulus vectors eliciting
spikes out of a total of 284.74K vectors. The data are qualitatively similar to those of the
salamander cell, although both the strength of suppression and specific shapes of the scatter
plots differs. In addition to suppression, the method recovers facilitation (i.e., high-variance
axes) in some cells (not shown here).

3 Correcting for Bias in Kernel Estimates

The kernels in the previous section were all recovered from stimuli of a single contrast.
However, when the STA is computed in a ganglion cell for low and high contrast stimuli,
the low-contrast kernel shows a slower time course [9] (figure 7,a). This would appear
inconsistent with the method we describe, in which the STA is meant to provide an estimate
of a single excitatory kernel. This behavior can be explained by assuming a model of the
form given in equation 2, and in addition dropping the constraint that the gain control
kernels are orthogonal (or identical) to the excitatory kernel.
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Figure 5: a, Sorted eigenvalues of stimuli eliciting spikes from a macaque retina (cell 2001-
09-29-E6A). b-c, Scatter plots of stimuli projected onto recovered axes.
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Figure 6: Demonstration of estimator bias. When a gain control kernel is not orthogonal to
the excitatory kernel, the responses to one side of the excitatory kernel are suppressed more
than those on the other side. The resulting STA estimate is thus biased away from the true
excitatory kernel,

�� �
.

First we show that when the orthogonality constraint is dropped, the STA estimate of the
excitatory kernel is biased by the gain control signal. Consider a situation in which a
suppressive kernel contains a component in the direction of the excitatory kernel, �� � . We
write �� � �-, �� � 2 ��/.� , where ��/.� is perpendicular to the excitatory kernel. Then, for example,
a stimulus �� � �� � 210 ��2.� , with 043 � , produces a suppressive component along �� � equal to, � � �� � � � . 250 � � ��2.� � � . , but the corresponding paired stimulus vector �� � �� � � 0 ��2.� produces
a suppressive component of

, � � ��	� � � . � 0 � � ��/.� � � . . Thus, the two stimuli are equally likely
to occur but not equally likely to elicit a spike. As a result, the STA will be biased in the
direction

� ��2.� . Figure 6 illustrates an example in which a non-orthogonal suppressive axis
biases the estimate of the STA.

Now consider the model in equation 2 in the presence of a non-orthogonal suppressive
subspace. Note that the bias is stronger for larger amplitude stimuli because the constant
term 3 . dominates the gain control signal for weak stimuli. Indeed, we have previously
hypothesized that changes in receptive field tuning can arise from divisive gain control
models that include an additive constant [14].

Even when the STA estimate is biased by the gain control signal, we can still obtain an
(asymptotically) unbiased estimate of the excitatory kernel. Specifically, the true exci-
tatory kernel lies within the subspace spanned by the estimated (biased) excitatory and
suppressive kernels. So, assuming a particular gain control model, we can again maximize
the likelihood of the data, but now allowing both the excitatory and suppressive kernels to
move within the subspace spanned by the initial estimated kernels. The resulting suppres-
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Figure 7: STA kernels estimated from low (8.5%) and high (34%) contrast salamander reti-
nal ganglion cell data (cell 1999-11-12-B6A). Kernels are normalized to unit energy. a, STA
kernels derived from ganglion cell spikes. b, STA kernels derived from simulated spikes
using ML-estimated model. c, Kernels and corresponding weights of ML-estimated model.

sive kernels need not be orthogonal to the excitatory kernel.

We maximize the likelihood of the full two-contrast data set using a model that is a gener-
alization of that given by equation (2):

$ % ��')( �+* � ���, �
� �� � 
 �� ���% / �10 � � �� � 
 �� � . , � � . 243 � (3)

The exponent ' is incorporated to allow for more realistic contrast-response functions.
The excitatory axis is initially set to the STA and the suppressive axes are set to the
low-eigenvalue eigenvectors of the STC, along with the STA (e.g., to allow for self-
suppression). The recovered axes and weights are shown in Figure 7b, and remaining model
parameters are: ' ���

5
��� , 3 �

�
5 "
�  �� . Whereas the axes recovered from the STA/STC

analysis are orthogonal, the axes determined during the maximum likelihood stage need not
be (and in the data example are not) orthogonal. Figure 7b also demonstrates that the fitted
model accounts for the change in STA observed at different contrast levels. Specifically,
we simulate responses of the model (equation (3) with Poisson spike generation) on each
of the two contrast stimulus sets, and then compute the STA based on these simulated spike
trains. Although it is based on a single fixed excitatory kernel, the model exhibits a change
in STA shape as a function of contrast very much like the salamander neuron.

4 Discussion

We have described a spike-triggered covariance method for characterizing a neuron with
gain control, and demonstrated the plausibility of the technique through simulation and
analysis of neural data. The suppressive axes recovered from retinal ganglion cell data
appear to be significant because: (1) As in the model simulation, a small number of eigen-
values are significantly below the rest; (2) The eigenvectors associated with these axes are
concentrated in a temporal region immediately preceding the spike, unlike the remaining
axes; (3) Projection of the multi-dimensional stimulus vectors onto these axes reveal reduc-
tions of spike probability; (4) The full model, with parameters recovered through maximum
likelihood, explains changes in STA as a function of contrast.

Models of retinal processing often incorporate gain control [e.g., 8, 10, 15, 17, 18]. We
have shown for the first time how one can use white noise analysis to recover a gain con-
trol subspace. The kernels defining this subspace correspond to relatively short timescales.
Thus, it is interesting to compare the recovered subspace to models of rapid gain control.
In particular, Victor [15] proposed a retinal gain model in which the gain signal consists



of time-delayed copies of the excitatory kernel. In fact, for the cell shown in Figure 3,
the recovered suppressive subspace lies within the space spanned by shifted copies of the
excitatory kernel. The fact that we do not see evidence for slow gain control in the analysis
might indicate that these signals do not lie within a low-dimensional stimulus subspace. In
addition, the analysis is not capable of distinguishing between physiological mechanisms
that could underlie gain control behaviors. Potential candidates may include internal bio-
chemical adjustments, non-Poisson spike generation mechanisms, synaptic depression, and
shunting inhibition due to other neurons.

This technique should be applicable to a far wider range of neural data than has been
shown here. Future work will incorporate analysis of data gathered using stimuli that vary
in both time and space (as in the simulated example of Figure 2). We are also exploring
applicability of the technique to other visual areas.
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