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Abstract 

Recently Hinton (1999) has introduced the Products of Experts 
(PoE) model in which several individual probabilistic models for 
data are combined to provide an overall model of the data. Be­
low we consider PoE models in which each expert is a Gaussian. 
Although the product of Gaussians is also a Gaussian, if each Gaus­
sian has a simple structure the product can have a richer structure. 
We examine (1) Products of Gaussian pancakes which give rise to 
probabilistic Minor Components Analysis , (2) products of I-factor 
PPCA models and (3) a products of experts construction for an 
AR(l) process. 

Recently Hinton (1999) has introduced the Products of Experts (PoE) model in 
which several individual probabilistic models for data are combined to provide an 
overall model of the data. In this paper we consider PoE models in which each 
expert is a Gaussian. It is easy to see that in this case the product model will 
also be Gaussian. However, if each Gaussian has a simple structure, the product 
can have a richer structure. Using Gaussian experts is attractive as it permits a 
thorough analysis of the product architecture, which can be difficult with other 
models , e.g. models defined over discrete random variables. 

Below we examine three cases of the products of Gaussians construction: (1) Prod­
ucts of Gaussian pancakes (PoGP) which give rise to probabilistic Minor Compo­
nents Analysis (MCA), providing a complementary result to probabilistic Principal 
Components Analysis (PPCA) obtained by Tipping and Bishop (1999); (2) Prod­
ucts of I-factor PPCA models; (3) A products of experts construction for an AR(l) 
process. 



Products of Gaussians 

If each expert is a Gaussian pi(xI8 i ) '" N(J1i' ( i), the resulting distribution of the 
product of m Gaussians may be expressed as 

By completing the square in the exponent it may be easily shown that p(xI8) 
N(/1;E, (2:), where (E l = 2::1 (i l . To simplify the following derivations we will 
assume that pi(xI8 i ) '" N(O, (i) and thus that p(xI8) '" N(O, (2:). J12: i ° can be 
obtained by translation of the coordinate system. 

1 Products of Gaussian Pancakes 

A Gaussian "pancake" (GP) is a d-dimensional Gaussian, contracted in one dimen­
sion and elongated in the other d - 1 dimensions. In this section we show that the 
maximum likelihood solution for a product of Gaussian pancakes (PoGP) yields a 
probabilistic formulation of Minor Components Analysis (MCA). 

1.1 Covariance Structure of a GP Expert 

Consider a d-dimensional Gaussian whose probability contours are contracted 
in the direction w and equally elongated in mutually orthogonal directions 
VI , ... , vd-l.We call this a Gaussian pancake or GP. Its inverse covariance may be 
written as 

d - l 

( - 1 = L ViV; /30 + wwT /3,;;, (1) 
i = l 

where VI, ... ,V d - l, W form a d x d matrix of normalized eigenvectors of the covari­
ance C. /30 = 0"02 , /3,;; = 0";;2 define inverse variances in the directions of elongation 
and contraction respectively, so that 0"5 2 0"1. Expression (1) can be re-written in 
a more compact form as 

(2) 

where w = wJ/3,;; - /30 and Id C jRdxd is the identity matrix. Notice that according 
to the constraint considerations /30 < /3,;;, and all elements of ware real-valued. 

Note the similarity of (2) with expression for the covariance of the data of a 1-
factor probabilistic principal component analysis model ( = 0"21d + wwT (Tipping 
and Bishop, 1999) , where 0"2 is the variance of the factor-independent spherical 
Gaussian noise. The only difference is that it is the inverse covariance matrix for 
the constrained Gaussian model rather than the covariance matrix which has the 
structure of a rank-1 update to a multiple of Id . 

1.2 Covariance of the PoGP Model 

We now consider a product of m GP experts, each of which is contracted in a single 
dimension. We will refer to the model as a (I,m) PoGP, where 1 represents the 
number of directions of contraction of each expert. We also assume that all experts 
have identical means. 



From (1), the inverse covariance of the the resulting (I,m) PoGP model can be 
expressed as 

m 

C;;l = L Cil (3) 
i=l 

where columns of We Rdxm correspond to weight vectors of the m PoGP experts, 
and (3E = 2::1 (3~i) > o. 

1.3 Maximum-Likelihood Solution for PoGP 

Comparing (3) with m-factor PPCA we can make a conjecture that in contrast 
with the PPCA model where ML weights correspond to principal components of 
the data covariance (Tipping and Bishop, 1999), weights W of the PoGP model 
define projection onto m minor eigenvectors of the sample covariance in the visible 
d-dimensional space, while the distortion term (3E Id explains larger variationsl . This 
is indeed the case. 

In Williams and Agakov (2001) it is shown that stationarity of the log-likelihood 
with respect to the weight matrix Wand the noise parameter (3E results in three 
classes of solutions for the experts' weight matrix, namely 

W 
5 

5W 

0; 
CE ; 

CEW, W:j:. 0, 5:j:. CE, 
(4) 

where 5 is the covariance matrix of the data (with an assumed mean of zero). The 
first two conditions in (4) are the same as in Tipping and Bishop (1999), but for 
PPCA the third condition is replaced by C-lW = 5- l W (assuming that 5- 1 exists). 
In Appendix A and Williams and Agakov (2001) it is shown that the maximum 
likelihood solution for W ML is given by: 

(5) 

where R c Rmxm is an arbitrary rotation matrix, A is a m x m matrix containing 
the m smallest eigenvalues of 5 and U = [Ul , ... ,um ] c Rdxm is a matrix of the 
corresponding eigenvectors of 5. Thus, the maximum likelihood solution for the 
weights of the (1, m) PoG P model corresponds to m scaled and rotated minor 
eigenvectors of the sample covariance 5 and leads to a probabilistic model of minor 
component analysis. As in the PPCA model, the number of experts m is assumed 
to be lower than the dimension of the data space d. 

The correctness of this derivation has been confirmed experimentally by using a 
scaled conjugate gradient search to optimize the log likelihood as a function of W 
and (3E. 

1.4 Discussion of PoGP model 

An intuitive interpretation of the PoGP model is as follows: Each Gaussian pancake 
imposes an approximate linear constraint in x space. Such a linear constraint is that 
x should lie close to a particular hyperplane. The conjunction of these constraints 
is given by the product of the Gaussian pancakes. If m « d it will make sense to 

lBecause equation 3 has the form of a factor analysis decomposition, but for the inverse 
covariance matrix, we sometimes refer to PoGP as the rotcaf model. 



define the resulting Gaussian distribution in terms of the constraints. However, if 
there are many constraints (m > d/2) then it can be more efficient to describe the 
directions of large variability using a PPCA model, rather than the directions of 
small variability using a PoGP model. This issue is discussed by Xu et al. (1991) in 
what they call the "Dual Subspace Pattern Recognition Method" where both PCA 
and MCA models are used (although their work does not use explicit probabilistic 
models such as PPCA and PoGP). 

MCA can be used, for example, for signal extraction in digital signal processing 
(Oja, 1992), dimensionality reduction, and data visualization. Extraction of the 
minor component is also used in the Pisarenko Harmonic Decomposition method 
for detecting sinusoids in white noise (see, e.g. Proakis and Manolakis (1992), p . 
911). Formulating minor component analysis as a probabilistic model simplifies 
comparison of the technique with other dimensionality reduction procedures, per­
mits extending MCA to a mixture of MCA models (which will be modeled as a 
mixture of products of Gaussian pancakes) , permits using PoGP in classification 
tasks (if each PoGP model defines a class-conditional density) , and leads to a num­
ber of other advantages over non-probabilistic MCA models (see the discussion of 
advantages of PPCA over PCA in Tipping and Bishop (1999)). 

2 Products of PPCA 

In this section we analyze a product of m I-factor PPCA models , and compare it 
to am-factor PPCA model. 

2.1 I-factor PPCA model 

Consider a I-factor PPCA model, having a latent variable Si and visible variables x. 
The joint distribution is given by P(Si, x) = P(si) P(xlsi). We set P(Si) '" N(O, 1) 
and P(XI Si) '" N(WiSi' (]"2) . Integrating out Si we find that Pi(x) '" N(O, Ci ) where 
C = wiwT + (]"21d and 

(6) 

where (3 = (]"-2 and "(i = (3/(1 + (3 llwiW). (3 and "(i are the inverse variances in the 
directions of contraction and elongation respectively. 

The joint distribution of Si and x is given by 

(7) 

(3 [s; T T ] exp - - - - 2x WiSi + X X . 
2 "(i 

(8) 

Tipping and Bishop (1999) showed that the general m-factor PPCA model (m­
PPCA) has covariance C = (]"21d + WWT , where W is the d x m matrix of factor 
loadings. When fitting this model to data, the maximum likelihood solution is to 
choose W proportional to the principal components of the data covariance matrix. 



2.2 Products of I-factor PPCA models 

We now consider the product of m I-factor PPCA models, which we denote a 
(1, m)-PoPPCA model. The joint distribution over 5 = (Sl' ... ,Srn)T and x is 

13 m [s; T T ] P(x,s) ex: exp -"2 L ---:- - 2x W iSi + X X • 

i=l ,,(, 

(9) 

Let zT d~f (xT , ST). Thus we see that the distribution of z is Gaussian with inverse 
covariance matrix 13M, where 

-W) r - 1 , (10) 

and r = diag("(l , ... ,"(m)' Using the inversion equations for partitioned matrices 
(Press et al., 1992, p. 77) we can show that 

(11) 

where ~xx is the covariance of the x variables under this model. It is easy to confirm 
that this is also the result obtained from summing (6) over i = 1, ... ,m. 

2.3 Maximum Likelihood solution for PoPPCA 

Am-factor PPCA model has covariance a21d + WWT and thus, by the Woodbury 
formula, it has inverse covariance j3 ld - j3W(a2 lm + WT W) - lWT . The maximum 
likelihood solution for a m-PPCA model is similar to (5), i.e. W = U(A _a2Im)1/2 RT, 
but now A is a diagonal matrix of the m principal eigenvalues, and U is a matrix 
of the corresponding eigenvectors. If we choose RT = I then the columns of W are 
orthogonal and the inverse covariance of the maximum likelihood m-PPCA model 
has the form j3 ld - j3WrwT. Comparing this to (11) (with W = W) we see that the 
difference is that the first term of the RHS of (11) is j3m1d , while for m-PPCA it is 
j3 ld. 

In section 3.4 and Appendix C.3 of Agakov (2000) it is shown that (for m :::=: 2) we 
obtain the m-factor PPCA solution when 

- m -
A<A' < --A - ' m -I ' i = 1, ... ,m, (12) 

where A is the mean of the d - m discarded eigenvalues, and Ai is a retained eigen­
value; it is the smaller eigenvalues that are discarded. We see that the covariance 
must be nearly spherical for this condition to hold. For covariance matrices sat­
isfying (12) , this solution was confirmed by numerical experiments as detailed in 
(Agakov, 2000, section 3.5). 

To see why this is true intuitively, observe that Ci 1 for each I-factor PPCA expert 
will be large (with value 13) in all directions except one. If the directions of con­
traction for each Ci 1 are orthogonal, we see that the sum of the inverse covariances 
will be at least (m - 1)13 in a contracted direction and m j3 in a direction in which 
no contraction occurs. The above shows that for certain types of sample covari­
ance matrix the (1 , m) PoPPCA solution is not equivalent to the m-factor PPCA 
solution. However, it is interesting to note that by relaxing the constraint on the 
isotropy of each expert's noise the product of m one-factor factor analysis models 
can be shown to be equivalent to an m-factor factor analyser (Marks and Movellan, 
2001). 



(b) 
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Figure 1: (a) Two experts. The upper one depicts 8 filled circles (visible units) and 
4 latent variables (open circles), with connectivity as shown. The lower expert also 
has 8 visible and 4 latent variables, but shifted by one unit (with wraparound). (b) 
Covariance matrix for a single expert. (c) Inverse covariance matrix for a single 
expert. (d) Inverse covariance for product of experts. 

3 A Product of Experts Representation for an AR(l) 
Process 

For the PoPPCA case above we have considered models where the latent variables 
have unrestricted connectivity to the visible variables. We now consider a product 
of experts model with two experts as shown in Figure l(a). The upper figure depicts 
8 filled circles (visible units) and 4 latent variables (open circles), with connectivity 
as shown. The lower expert also has 8 visible and 4 latent variables, but shifted 
by one unit (with wraparound) with respect to the first expert. The 8 units are, 
of course, only for illustration- the construction is valid for any even number of 
visible units. 

Consider one hidden unit and its two visible children. Denote the hidden unit by s 
the visible units as Xl and Xr (l, r for left and right). Set s '" N(O, 1) and 

Xl = as + bWI Xr = ±as + bwr , (13) 

where WI and Wr are independent N(O , 1) random variables, and a, b are constants. 
(This is a simple example of a Gaussian tree-structured process, as studied by a 
number of groups including that led by Prof. Willsky at MIT; see e.g. Luettgen 
et al. (1993).) Then (xf) = (x;) = a2 + b2 and (XIXr ) = ±a2 • The corresponding 
2 x 2 inverse covariance matrix has diagonal entries of (a2 + b2 )j ~ and off-diagonal 
entries of =t=a2 j~ , where ~ = b2 (b2 + 2a2 ). 

Graphically, the covariance matrix of a single expert has the form shown in Figure 
l(b) (where we have used the + rather than - choice from (13) for all variables). 
Figure l(c) shows the corresponding inverse covariance for the single expert, and 
Figure 1 (d) shows the resulting inverse covariance for the product of the two experts, 
with diagonal elements 2(a2 + b2 )j ~ and off-diagonal entries of =t=a2 j~. 

An AR(l) process of the circle with d nodes has the form Xi = aXi - 1 (mod d) + Zi, 



where Zi ~ N(O,v). Thusp(X) <X exp-21v L:i(Xi-aXi- 1 (mod d))2 and the inverse 
covariance matrix has a circulant tridiagonal structure with diagonal entries of 
(1 + ( 2 )/v and off-diagonal entries of -a/v. The product of experts model defined 
above can be made equivalent to the circular AR(I) process by setting 

(14) 

The ± is needed in (13) as when a is negative we require Xr = -as + bWr to match 
the inverse covariances. 

We have shown that there is an exact construction to represent a stationary cir­
cular AR(I) process as a product of two Gaussian experts. The approximation 
of other Gaussian processes by products of tree-structured Gaussian processes is 
further studied in (Williams and Felderhof, 2001). Such constructions are interest­
ing because they may allow fast approximate inference in the case that d is large 
(and the target process may be 2 or higher dimensional) and exact inference is not 
tractable. Such methods have been developed by Willsky and coauthors, but not 
for products of Gaussians constructions. 

Acknowledgements 

This work is partially supported by EPSRC grant GR/L78161 Probabilistic Models 
for Sequences. Much of the work on PoGP was carried out as part of the MSc 
project of FVA at the Division of Informatics, University of Edinburgh. CW thanks 
Sam Roweis, Geoff Hinton and Zoubin Ghahramani for helpful conversations on the 
rotcaf model during visits to the Gatsby Computational Neuroscience Unit. FVA 
gratefully acknowledges the support of the Royal Dutch Shell Group of Companies 
for his MSc studies in Edinburgh through a Centenary Scholarship. SNF gratefully 
acknowledges additional support from BAE Systems. 

References 

Agakov, F. (2000). Investigations of Gaussian Products-of-Experts Models. Master's 
thesis, Division of Informatics, The University of Edinburgh. Available at http://'iI'iI'iI . 
dai.ed.ac.uk/homes/felixa/all.ps.gz. 

Hinton, G. E . (1999) . Products of experts. In Proceedings of the Ninth International 
Conference on Artificial Neural Networks (ICANN gg), pages 1- 6. 

Luettgen, M. , Karl , W. , and Willsky, A. (1993). Multiscale Representations of Markov 
Random Fields. IEEE Trans. Signal Processing, 41(12):3377- 3395. 

Marks , T. and Movellan, J. (2001). Diffusion Networks, Products of Experts, and Factor 
Analysis. In Proceedings of the 3rd International Conference on Independent Component 
Analysis and Blind Source Separation. 

OJ a, E. (1992). Principal Components, Minor Components, and Linear Neural Networks. 
Neural N etworks, 5:927 - 935. 

Press, W. H. , Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1992). Numerical 
Recipes in C. Cambridge University Press, Second edition. 

Proakis, J. G. and Manolakis, D. G. (1992). Digital Signal Processing: Principles, Algo­
rithms and Applications. Macmillan. 

Tipping, M. E. and Bishop, C. M. (1999). Probabilistic principal components analysis. J. 
Roy. Statistical Society B, 61(3) :611- 622. 

Williams, C. K. I. and Agakov, F. V. (2001). Products of Gaussians and Probabilistic 
Minor Components Analysis. Technical Report EDI-INF-RR-0043, Division of Infor­
matics, University of Edinburgh. Available at http://'iI'iI'iI. informatics. ed. ac. ukl 
publications/report/0043.html. 



Williams, C. K. I. and Felderhof, S. N. (2001). Products and Sums of Tree-Structured 
Gaussian Processes. In Proceedings of the ICSC Symposium on Soft Computing 2001 
(SOCO 2001). 

Xu, L. and Krzyzak, A. and Oja, E. (1991). Neural Nets for Dual Subspace Pattern 
Recogntion Method. International Journal of Neural Systems, 2(3):169- 184. 

A ML Solutions for PoGP 

Here we analyze the three classes of solutions for the model covariance matrix which 
result from equation (4) of section 1.3. 

The first case W = 0 corresponds to a minimum of the log-likelihood. 

In the second case, the model covariance e~ is equal to the sample covariance 5. 
From expression (3) for e i;l we find WWT = 5- 1 - ;3~ ld. This has the known 
solution W = Um(A - 1 - ;3~ lm)1 /2 RT , where Um is the matrix of the m eigenvectors 
of 5 with the smallest eigenvalues and A is the corresponding diagonal matrix of the 
eigenvalues. The sample covariance must be such that the largest d - m eigenvalues 
are all equal to ;3~; the other m eigenvalues are matched explicitly. 

Finally, for the case of approximate model covariance (5W = e~w, 5 =f. e~) we, by 
analogy with Tipping and Bishop (1999), consider the singular value decomposition 
of the weight matrix, and establish dependencies between left singular vectors of 
W = ULRT and eigenvectors of the sample covariance 5. U = [U1 , U2 , ... , um] C 
lRdxm is a matrix of left singular vectors of W with columns constituting an or­
thonormal basis, L = diag(h,l2, ... ,lm) C lRmxm is a diagonal matrix of the sin­
gular values of Wand R C lRmxm defines an arbitrary rigid rotation of W. For this 
case equation (4) can be written as 5UL = e~ UL , where e~ is obtained from (3) by 
applying the matrix inversion lemma [see e.g. Press et al. (1992)]. This leads to 

5UL = e~UL (;3i;lld - ;3i;l W(;3~ + WTW)-lWT)UL 

U(;3i;l lm - ;3i;l LRT(;3~ lm + RL2RT) -l RL)L 

U(;3i; l lm - ;3i;l(;3~ L -2 + Im) -l) L. (15) 

Notice that the term ;3;1 1m - ;3;l(;3~ L -2 + Im)-l in the r.h.s. of equation (15) is 
just a scaling factor of U. Equation (15) defines the matrix form of the eigenvector 
equation, with both sides post-multiplied by the diagonal matrix L. 

If li =f. 0 then (15) implies that 

e~ U i = 5Ui = AiUi, Ai = ;3i;1(1 - (;3~li2 + 1) - 1), (16) 
where Ui is an eigenvector of 5, and Ai is its corresponding eigenvalue. The scaling 
factor li of the ith retained expert can be expressed as li = (Ail - ;3~)1/2 . 

Obviously, if li = 0 then Ui is arbitrary. If li = 0 we say that the direction corre­
sponding to Ui is discarded, i.e. the variance in that direction is explained merely 
by noise. Otherwise we say that Ui is retained. All potential solutions of W may 
then be expressed as 

W = Um(D - ;3~ lm)1 /2 RT , (17) 
where R C lRmxm is a rotation matrix, Um = [U1U2 ... um] C lRdxm is a matrix whose 
columns correspond to m eigenvectors of 5, and D = diag( d1 , d2 , ... , dm ) C lRm x m 
such that di = Ail if Ui is retained and di = ;3~ if Ui is discarded. 

It may further be shown (Williams and Agakov (2001)) that the optimal solution 
for the likelihood is reached when W corresponds to the minor eigenvectors of the 
sample covariance 5. 


