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Abstract

We consider the problem of learning to attain multiple goals in a dynamic envi-
ronment, which is initially unknown. In addition, the environment may contain
arbitrarily varying elements related to actions of other agents or to non-stationary
moves of Nature. This problem is modelled as a stochastic (Markov) game between
the learning agent and an arbitrary player, with a vector-valued reward function.
The objective of the learning agent is to have its long-term average reward vector
belong to a given target set. We devise an algorithm for achieving this task, which
is based on the theory of approachability for stochastic games. This algorithm com-
bines, in an appropriate way, a finite set of standard, scalar-reward learning algo-
rithms. Sufficient conditions are given for the convergence of the learning algorithm
to a general target set. The specialization of these results to the single-controller
Markov decision problem are discussed as well.

1 Introduction

This paper considers an on-line learning problem for Markov decision processes with vector-valued
rewards. Each entry of the reward vector represents a scalar reward (or cost) function which is
of interest. Focusing on the long-term average reward, we assume that the desired performance is
specified through a given target set, to which the average reward vector should eventually belong.
Accordingly, the specified goal of the decision maker is to ensure that the average reward vector will
converge to the target set. Following terminology from game theory, we refer to such convergence
of the reward vector as approaching the target set.

A distinctive feature of our problem formulation is the possible incorporation of arbitrarily varying
elements of the environment, which may account for the influence of other agents or non-stationary
moves of Nature. These are collectively modelled as a second agent, whose actions may affect both
the state transition and the obtained rewards. This agent is free to choose its actions according to
any control policy, and no prior assumptions are made regarding its policy.

This problem formulation is derived from the so-called theory of approachability that was introduced
in [3] in the context of repeated matrix games with vector payoffs. Using a geometric viewpoint, it
characterizes the sets in the reward space that a player can guarantee for himself for any possible
policy of the other player, and provides appropriate policies for approaching these sets. Approach-
ability theory has been extended to stochastic (Markov) games in [14], and the relevant results are
briefly reviewed in Section 2. In this paper we add the learning aspect, and consider the problem of
learning such approaching policies on-line, using Reinforcement Learning (RL) or similar algorithms.

Approaching policies are generally required to be non-stationary. Their construction relies on a
geometric viewpoint, whereby the average reward vector is “steered” in the direction of the target
set by the use of direction-dependent (and possibly stationary) control policies. To motivate the
steering viewpoint, consider the following one dimensional example of an automatic temperature



controlling agent. The measured property is the temperature which should be in some prescribed
range [T, T], the agent may activate a cooler or a heater at will. An obvious algorithm that achieves
the prescribed temperature range is — when the average temperature is higher than T choose a
“policy” that reduces it, namely activate the cooler; and if the average temperature is lower than T'
use the heater. See Figure 1(a) for an illustration. Note that this algorithm is robust and requires
little knowledge about the characteristics of the processes, as would be required by a procedure that
tunes the heater or cooler for continuous operation. A learning algorithm needs only determine
which element to use at each of the two extreme regions.
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Figure 1: (a) The single dimensional temperature example. If the temperature is higher than T
the control is to cool, and if the temperature is lower than T the control is to heat. (b) The two
dimensional temperature-humidity example. The learning directions are denoted by arrows, note
that an infinite number of directions are to be considered.

Consider next a more complex multi-objective version of this controlling agent. The controller’s
objective is as before to have the temperature in a certain range. One can add other parameters such
as the average humidity, frequency of switching between policies, average energy consumption and
so on. This problem is naturally characterized as a multi-objective problem, in which the objective
of the controller is to have the average reward in some target set. (Note that in this example, the
temperature itself is apparently the object of interest rather than its long-term average. However,
we can reformulate the temperature requirement as an average reward objective by measuring the
fraction of times that the temperature is outside the target range, and require this fraction to be zero.
For the purpose of illustration we shall proceed here with the original formulation). For example,
suppose that the controller is also interested in the humidity. For the controlled environment of, say,
a greenhouse, the allowed level of humidity depends on the average temperature. An illustrative
target set is shown in Figure 1(b). A steering policy for the controller is not as simple anymore.
In place of the two directions (left/right) of the one-dimensional case, we now face a continuum of
possible directions, each associated with a possibly different steering policy. For the purpose of the
proposed learning algorithm we shall require to consider only a finite number of steering policies.
We will show that this can always be done, with negligible effect on the attainable performance.

The analytical basis for this work relies on three elements: stochastic game models, which capture the
Markovian system dynamics while allowing arbitrary variation in some elements of the environment;
the theory of approachability for vector-valued dynamic games, which provides the basis for the
steering approach; and RL algorithms for (scalar) average reward problems. For the sake of brevity,
we do not detail the mathematical models and proofs and concentrate on concepts.

Reinforcement Learning (RL) has emerged in the last decade as a unifying discipline for learning and
adaptive control. Comprehensive overviews may be found in [2, 7]. RL for average reward Markov
Decision Processes (MDPs) was suggested in [13, 10] and later analyzed in [1]. Several methods
exist for average reward RL, including Q-learning [1] the E? algorithm [8], actor-critic schemes [2]
and more.

The paper is organized as follows: In Section 2 we describe the stochastic game setup, recall ap-



proachability theory, and mention a key theorem that allows to consider only a finite number of
directions for approaching a set. Section 3 describes the proposed multi-criteria RL algorithm and
outlines its convergence proof. We also briefly discuss learning in multi-criteria single controller
environments, as this case is a special case of the more general game model. An illustrative example
is briefly described in Section 4 and concluding remarks are drawn in Section 5.

2 Multi-Criteria Stochastic Games

In this section we present the multi-criteria stochastic game model. We recall some known results
from approachability theory for stochastic games with vector-valued reward, and state a key theorem
which decomposes the problem of approaching a target set into a finite number of scalar control
problems.

We consider a two-person average reward stochastic game model, with a vector-valued reward func-
tion. We refer to the players as P1 (the learning agent) and P2 (the arbitrary adversary). The
game is defined by: the state space S; the sets of actions for P1 and P2, respectively, in each
state s, A and B; the state transition kernel, P = (P(s’|s,a,b)); a vector-valued reward function
m: S x Ax B — IR*. The reward itself is allowed to be random, in which case it is assumed
to have a bounded second moment. At each time epoch n > 0, both players observe the current
state s,, and then P1 and P2 simultaneously choose actions a, and b,, respectively. As a result
P1 receives the reward vector m,, = m(sy, an, b,) and the next state is determined according to the
transition probability P(:|$p, an,by). More generally, we allow the actual reward m,, to be random,
in which case m(sy,, an, b,) denotes its mean and a bounded second moment is assumed. We further
assume that both players observe the previous rewards and actions (however, in some of the learning
algorithms below, the assumption that P1 observes P2’s action may be relaxed). A policy 7 € II for
P1 is a mapping which assigns to each possible observed history a mixed action in A(A), namely a
probability vector over P1’s action set A. A policy o € ¥ for P2 is defined similarly. A policy of
either player is called stationary if the mixed action it prescribes depends only on the current state
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Sn. Let m,, denote the average reward by time n: m,, = % ?:0 my.

The following recurrence assumption will be imposed. Let state s* denote a specific reference state
. . o . A
to which a return is guaranteed. We define the hitting time of state s* as: 7 = min{n > 0: s, = s*}.

Assumption 1 (Recurrence) There ezist a state s* € S and a finite constant N such that
Ei (1)< N forallmreIl,oc €Y andscS,

where E7 _ is the expectation operator when starting from state so = s and using policies m and o
for P1 and P2, respectively.

If the game is finite then this assumption is satisfied if state s* is accessible from all other states
under any pair of stationary deterministic policies [14]. We note that the recurrence assumption
may be relaxed in a similar manner to [11].

Let u be a unit vector in the reward space IR*. We often consider the projected game in direction
u as the zero-sum stochastic game with same dynamic as above, and scalar rewards r,, := my, - u.
Here “” stands for the standard inner product in IR*. Denote this game by I's(u), where s is the
initial state. The scalar stochastic game I';(u), has a value, denoted vI's(u), if
vI'¢(u) = supinfliminf E; (1, - v) = inf sup limsup E; (7, - u) .
T 0 N—o0 g 7T n—o
For finite games, the value exists [12]. Furthermore, under Assumption 1 the value is independent

of the initial state and can be achieved in stationary policies [6]. We henceforth simply write vI'(u)
for this value.

We next consider the task of approaching a given target set in the reward space, and introduce
approaching policies for the case where the game parameters are fully known to P1. Let T ¢ RF
denote the target set. In the following, d is the Euclidean distance in R*, and P? , is the probability
measure induced by the policies 7 and o, with initial state s.



Definition 2.1 The set T C IR is approachable (from initial state s) if there exists a T-
approaching policy ™ of P1 such that d(1n,,T) — 0 Py. ,-as., for every o € ¥ at a uniform rate
over Y.

The policy 7* in that definition will be called an approaching policy for P1. A set is approachable
if it is approachable from all states. Noting that approaching a set and its closure are the same, we
shall henceforth suppose that the set T is closed.

We recall the basic results from [14] regarding approachability for known stochastic games, which
generalize Blackwell’s conditions for repeated matrix games. Let
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denote the average per-cycle reward vector, which is the expected total reward over the cycle that
starts and ends in the reference state, divided by the expected duration of that cycle. For any = & T,
denote by C) a closest point in 7" to x, and let u, be the unit vector in the direction of C, — =z,
which points from z to the goal set T, see Figure 2 for an illustration.

Theorem 2.1 [14] Let Assumption 1 hold. Assume that for every point x € T there exists a policy
m(x) such that:
(p(n(x),0) = Cy) -uy >0, VoeX. (2)

Then T is approachable by P1. An approaching policy is: If s, = s* and 1, € T, play w(m,,) until
the next visit to state s*; otherwise, play arbitrarily.

Target Set

Figure 2: An illustration of approachability. m(z) brings P1 to the other side of the hyperplane
perpendicular to the segment between C, and .

Geometrically, the condition in (2) means that P1 can ensure, irrespectively of P2’s policy, that
the average per-cycle reward will be on the other side (relative to ) of the hyperplane which is
perpendicular to the line segment that points from = to C,. We shall refer to the direction u,
as the steering direction from point x, and to the policy 7(z) as the steering policy from z. The
approaching policy uses the following rule: between successive visits to the reference state, a fixed
(possibly stationary) policy is used. When in the reference state, the current average reward vector
My, is inspected. If this vector is not in 7', then the steering policy that satisfies (2) with z = m,, is
selected for the next cycle. Consequently, the average reward is “steered” towards T', and eventually
converges to it.

Recalling the definition of the projected game in direction u and its value vI'(u), the condition in (2)
may be equivalently stated as vI'(u,) > C, - u;. Furthermore, the policy m(z) can always be chosen
as the stationary policy which is optimal for P1 in the game I'(u,). In particular, the steering policy
m(x) needs to depend only on the corresponding steering direction wu,. It can be shown that for
convex target sets, the condition of the last theorem turns out to be both sufficient and necessary.

Standard approachability results, as outlined above, require to consider an infinite number of steering
directions whenever the reward in non-scalar. The corresponding set of steering policies may turn out
to be infinite as well. For the purpose of our learning scheme, we shall require an approaching policy
which relies on a finite set of steering directions and policies. The following results show that this can
indeed be done, possibly requiring to slightly expand the target set. In the following, let M be an
upper bound on the magnitude of the expected one-stage reward vector, so that ||m(s,a,b)|| < M for



all (s,a,b) (||-|| denote the Euclidean norm). We say that a set of vectors (uy,...,uy) is an e-cover
of the unit ball if for every vector in the unit ball u there exists a vector u; such that ||ju; —ul|| < €.

Theorem 2.2 Let Assumption 1 hold and suppose that the target set T C R* satisfies condition
(2). Fiz e > 0. Let {u1,...,uy} be an ¢/M cover of the unit ball. Suppose that m; is an optimal
strategy in the scalar game T'(u;) (1 < i < J). Then the following policy approaches T€, the e-
expansion of T: If s, = s* and m,, € T*, then choose j so that ws,, is closest to u; (in Euclidean
norm) and play m; until the next visit to state s*; otherwise, play arbitrarily.

Proof: (Outline) The basic observation is that if two directions, u and w; are close, then vI'(u)
and vI'(u;) are close. Consequently, by playing a strategy which is optimal in I'(u;) results in a play
which is almost optimal in I'(u). Finally we can apply Blackwell’s Theorem (2.1) for the expansion
of T, by noticing that a “good enough” strategy is played in every direction.

Remark: It follows immediately from the last theorem that the set T itself (rather than its e-
expansion) is approachable with a finite number of steering directions if 7'~¢, the e shrinkage of T,
satisfies (2). Equivalently, T is required to satisfy (2) with the 0 on the right-hand-side replaced by
e> 0.

3 The Multi-Criteria Reinforcement Learning Algorithm

In this section we introduce and prove the convergence of the MCRL (Multi-Criteria Reinforcement
Learning) algorithm. We consider the controlled Markov model of Section 2, but here we assume that
P1, the learning agent, does not know the model parameters, namely the state transition probabilities
and reward functions. A policy of P1 that does not rely on knowledge of these parameters will be
referred to as a learning policy. P1’s task is to approach a given target set 7', namely to ensure
convergence of the average reward vector to this set irrespective of P2’s actions.

The proposed learning algorithm relies on the construction of the previous section of approaching
policies with a finite number of steering directions. The main idea is to apply a (scalar) learning
algorithm for each of the projected games I'(u;) corresponding to these directions. Recall that each
such game is a standard zero-sum stochastic game with average reward. The required learning
algorithm for game I'(u) should secure an average reward that is not less than the value vI'(u) of
that game.

Consider a zero-sum stochastic game, with reward function r(s,a,b), average reward 7,, and value
v. Assume for simplicity that the initial state is fixed. We say that a learning policy 7 of P1 is
e-optimal in this game if, for any policy o of P2, the average reward satisfies

liminf 7, > v —¢€ Py a.s.,

n—oo
where P, is the probability measure induced by the algorithm =, P2’s policy ¢ and the game
dynamics. Note that P1 may be unable to learn a min-max policy as P2 may play an inferior policy
and refrain from playing certain actions, thereby keeping some parts of the game unobserved.

Remark: RL for average reward zero-sum stochastic games can be devised in a similar manner
to average reward Markov decision processes. For example, a Q-learning based algorithm which
combines the ideas of [9] with those of [1] can be devised. An additional assumption that is needed
for the analysis is that all actions of both players are used infinitely often. A different type of a scalar
algorithm that overcomes this problem is [4]. The algorithm there is similar to the E® algorithm [8]
which is based on explicit exploration-exploitation tradeoff and estimation of the game reward and
transition structure.

We now describe the MCRL algorithm that nearly approaches any target set T that satisfies (2).
The parameters of the algorithm are e and M. € is the approximation level and M is a known bound
on the norm of the expected reward per step. The goal of the algorithm is to approach T°¢, the €
expansion of T. There are J learning algorithms that are run in parallel, denoted by 71, ...7;. The
MCRL is described in Figure 3 and is given here as a meta-algorithm (the scalar RL algorithms 7,
are not specified). When arriving to s*, the decision maker checks if the average reward vector is
outside the set T°. In that case, he switches to an appropriate policy that is intended to “steer” the
average reward vector towards the target set. The steering policy () is chosen according to closest



direction (u;) to the actual direction needed according to the problem geometry. Recall that each
m; is actually a learning policy with respect to a scalar reward function. In general, when 7; is not
played, its learning pauses and the process history during that time is ignored. Note however that
some “off-policy” algorithms (such as Q-learning) can learn the optimal policy even while playing a
different policy. In that case a more efficient version of the MCRL is suggested, in which learning is
performed by all learning policies 7; continuously and concurrently.

0. Let uq,...uy be an €/2M cover of the unit ball. Initialize J different e/2-optimal scalar
algorithms, m1,...,7;.

1. If sg # s* play arbitrarily until s,, = s*.

2. (sp = s*) If i, € T goto step 1. Else let ¢ = arg mini<i<j |[[u; — U, ||2-

3. While s,, # s* play according to m;, the reward ; receives is wu; - m,,.

4. When s,, = s* goto step 2.

Figure 3: The MCRL algorithm

Theorem 3.1 Suppose that Assumption 1 holds and the MCRL algorithm is used with e-optimal
scalar learning algorithms. If the target set T' satisfies (2), then T is approached using MCRL.

Proof: (Outline) If a direction is played infinitely often, then eventually the learned strategy in
this direction is nearly optimal. If a direction is not played infinitely often it has a negligible effect
on the long term average reward vector. Since the learning algorithms are nearly optimal, then any
policy m; that is played infinitely often, eventually attains a (scalar) average reward of vI'(u;) —€/2.
One can apply Theorem 2.2 for the set T/ to verify that the overall policy is an approaching policy
for the target set. [ |

Note that for convex target sets the algorithm is consistent in the sense that if the set is approachable
then the algorithm attains it.

Remark: Multi-criteria Markov Decision Process (MDP) models may be regarded as a special case
of the stochastic game model that was considered so far, with P2 eliminated from the problem. The
MCRL meta-algorithm of the previous section remains the same for MDPs. Its constituent scalar
learning algorithms are now learning algorithms for the optimal polices in average-reward MDPs.
These are generally simpler than for the game problem. Examples of optimal or e-optimal algorithms
are Q-Learning with persistent exploration [2], Actor-critic schemes [2], an appropriate version of
the £ algorithm [8] and others. In the absence of an adversary, the problem of approaching a set
becomes much simpler. Moreover, it can be shown that if a set is approachable then it may be
approached using a stationary (possibly randomized) policy. Indeed, any point in feasible set of
state-action frequencies may be achieved by such a stationary policy [5]. Thus, alternative learning
schemes may be applicable to this problem. Another observation is that all steering policies learned
and used within the MCRL may now be deterministic stationary policies, which simplifies the
implementation of this algorithm.

4 Example

Recall the humidity-temperature example from the introduction. Suppose that the system is mod-
elled in such a way that P1 chooses a temperature-humidity curve. Then Nature (modelled as P2)
chooses the exact location on the temperature-humidity curve. In Figure 4(a) we show three differ-
ent temperature-humidity curves, that can be determined by P1 (each defined by a certain strategy
of P1 - fo, f1, f2). We implemented MCRL algorithm with nine directions. In each direction a
version of Littman’s Q-learning ([9]), adapted for average cost games, was used. A sample path of
the average reward generated by the MCRL algorithm is shown in Figure 4(b). The sample path
started at 'S’ and finished at "E’. For this specific run, an even smaller number of directions would
have sufficed (up and right). It can be seen that the learning algorithm pushes towards the target set
so that the path is mostly on the edge of the target set. Note that in this example a small number
of directions was quite enough for approaching the target set.
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Figure 4: (a) Greenhouse problem dynamics. (b) A sample path from ’S’ to 'E’

5 Conclusion

We have presented a learning algorithm that approaches a prescribed target set in multi-dimensional
performance space, provided this set satisfies a certain sufficient condition. Our approach essentially
relies on the theory of approachability for stochastic games, which is based on the idea of steering
the average reward vector towards the target set. We provided a key result stating that a set can
be approached to a given precision using only a finite number of steering policies, which may be
learned on-line.

An interesting observation regarding the proposed learning algorithm is that the learned optimal
polices in each direction are essentially independent of the target set T'. Thus, the target set need
not be fixed in advance and may be modified on-line without requiring a new learning process. This
may be especially useful for constrained MDPs.

Of further interest is the question of reduction of the number of steering directions used in the
algorithm. In some cases, especially when the requirements embodied by the target set T' are not
stringent, this number may be quite small compared to the worst-case estimate used above. A
possible refinement of the algorithm is to eliminate directions that are not required.

The scaling of he algorithm with the dimension of the reward space is exponential. The problem
is that as the dimension increases, exponentially many directions are needed to cover the unit ball.
While in general this is necessary, it might happen that considerably less directions are needed.
Conditions and algorithms that use much less than exponential number of directions are under
current study.
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