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Abstract 

We develop a tree-based reparameterization framework that pro­
vides a new conceptual view of a large class of iterative algorithms 
for computing approximate marginals in graphs with cycles. It 
includes belief propagation (BP), which can be reformulated as a 
very local form of reparameterization. More generally, we consider 
algorithms that perform exact computations over spanning trees 
of the full graph. On the practical side, we find that such tree 
reparameterization (TRP) algorithms have convergence properties 
superior to BP. The reparameterization perspective also provides 
a number of theoretical insights into approximate inference, in­
cluding a new characterization of fixed points; and an invariance 
intrinsic to TRP /BP. These two properties enable us to analyze 
and bound the error between the TRP /BP approximations and 
the actual marginals. While our results arise naturally from the 
TRP perspective, most of them apply in an algorithm-independent 
manner to any local minimum of the Bethe free energy. Our re­
sults also have natural extensions to more structured approxima­
tions [e.g. , 1, 2]. 

1 Introduction 

Given a graphical model, one important problem is the computation of marginal 
distributions of variables at each node. Although highly efficient algorithms exist 
for this task on trees, exact solutions are prohibitively complex for more general 
graphs of any substantial size. This difficulty motivates the use of approximate 
inference algorithms, of which one of the best-known and most widely studied is 
belief propagation [3], also known as the sum-product algorithm in coding [e.g., 4]. 

Recent work has yielded some insight into belief propagation (BP). Several re­
searchers [e.g., 5, 6] have analyzed the single loop case, where BP can be reformu­
lated as a matrix powering method. For Gaussian processes on arbitrary graphs, 
two groups [7, 8] have shown that the means are exact when BP converges. For 
graphs corresponding to turbo codes, Richardson [9] established the existence of 
fixed points, and gave conditions for their stability. More recently, Yedidia et al. [1] 



showed that BP corresponds to constrained minimization of the Bethe free energy, 
and proposed extensions based on Kikuchi expansions [10]. Related extensions to 
BP were proposed in [2]. The paper [1] has inspired other researchers [e.g., 11, 12] to 
develop more sophisticated algorithms for minimizing the Bethe free energy. These 
advances notwithstanding, much remains to be understood about the behavior of 
BP. 

The framework of this paper provides a new conceptual view of various algorithms 
for approximate inference, including BP. The basic idea is to seek a reparameter­
ization of the distribution that yields factors which correspond, either exactly or 
approximately, to the desired marginal distributions. If the graph is acyclic (i.e., 
a tree) , then there exists a unique reparameterization specified by exact marginal 
distributions over cliques. For a graph with cycles, we consider the idea of itera­
tively reparameterizing different parts of the distribution, each corresponding to an 
acyclic subgraph. As we will show, BP can be interpreted in exactly this manner , 
in which each reparameterization takes place over a pair of neighboring nodes. One 
of the consequences of this interpretation is a more storage-efficient "message-free" 
implementation of BP. More significantly, this interpretation leads to more general 
updates in which reparameterization is performed over arbitrary acyclic subgraphs, 
which we refer to as tree-based reparameterization (TRP) algorithms. 

At a low level, the more global TRP updates can be viewed as a tree-based schedule 
for message-passing. Indeed, a practical contribution of this paper is to demon­
strate that TRP updates tend to have better convergence properties than local 
BP updates. At a more abstract level, the reparameterization perspective provides 
valuable conceptual insight , including a simple tree-consistency characterization of 
fixed points, as well as an invariance intrinsic to TRP /BP. These properties allow 
us to derive an exact expression for the error between the TRP /BP approximations 
and the actual marginals. Based on this exact expression, we derive computable 
bounds on the error. Most of these results, though they emerge very naturally in 
the TRP framework , apply in an algorithm-independent manner to any constrained 
local minimum of the Bethe free energy, whether obtained by TRP /BP or an alter­
native method [e.g. , 11, 12]. More details of our work can be found in [13, 14]. 

1.1 Basic notation 

An undirected graph Q = (V, £) consists of a set of nodes or vertices V = {l , ... ,N} 
that are joined by a set of edges £. Lying at each node s E V is a discrete 
random variable Xs E {a, ... ,m - I}. The underlying sample space X N is the 
set of all N vectors x = {xs I S E V} over m symbols, so that IXNI = m N . 

We focus on stochastic processes that are Markov with respect to Q, so that the 
Hammersley-Clifford theorem [ e.g., 3] guarantees that the distribution factorizes 
as p(x) ex: [lcEe 'l/Jc(xc) where 'l/Jc(xc) is a compatibility function depending only 
on the subvector Xc = {xs I SEC} of nodes in a particular clique C. Note that 
each individual node forms a singleton clique, so that some of the factors 'l/Jc may 
involve functions of each individual variable. As a consequence, if we have inde­
pendent measurements Ys of Xs at some (or all) of the nodes, then Bayes' rule 
implies that the effect of including these measurements - i.e., the transformation 
from the prior distribution p(x) to the conditional distribution p(x I y) - is simply 
to modify the singleton factors. As a result, throughout this paper, we suppress 
explicit mention of measurements, since the problem of computing marginals for 
either p(x) or p(x I y) are of identical structure and complexity. The analysis of 
this paper is restricted to graphs with singleton ('l/Js) and pairwise ('l/Jst} cliques. 
However, it is straightforward to extend reparameterization to larger cliques, as in 
cluster variational methods [e.g., 10]. 



1.2 Exact tree inference as reparameterization 

Algorithms for optimal inference on trees have appeared in the literature of vari­
ous fields [e.g., 4, 3]. One important consequence of the junction tree representa­
tion [15] is that any exact algorithm for optimal inference on trees actually computes 
marginal distributions for pairs (s, t) of neighboring nodes. In doing so, it produces 
an alternative factorization p(x) = TI sEV Ps TI(s,t)E£ Pst/(PsPt ) where Ps and Pst 
are the single-node and pairwise marginals respectively. This {Ps, Pst} representa­
tion can be deduced from a more general factorization result on junction trees [e.g. 
15]. Thus, exact inference on trees can be viewed as computing a reparameter­
ized factorization of the distribution p(x) that explicitly exposes the local marginal 
distributions. 

2 Tree-based reparameterization for graphs with cycles 

The basic idea of a TRP algorithm is to perform successive reparameterization up­
dates on trees embedded within the original graph. Although such updates are 
applicable to arbitrary acyclic substructures, here we focus on a set T 1 , ... , TL 
of embedded spanning trees. To describe TRP updates, let T be a pseudo­
marginal probability vector consisting of single-node marginals Ts(xs) for 8 E V; 
and pairwise joint distributions Tst (x s, Xt) for edges (s, t) E [. Aside from pos­
itivity and normalization (Lx Ts = 1; L x x Tst = 1) constraints, a given vec-

s s , t 

tor T is arbitraryl , and gives rises to a parameterization of the distribution as 
p(x; T) ex: TI sEV Ts TI(S,t)E£ Tst/ {(Lx. Tst)(L Xt Tst )}, where the dependence of Ts 
and Tst on x is omitted for notational simplicity. Ultimately, we shall seek vectors 
T that are consistent - i.e. , that belong to <C = {T I Lx. Tst = Tt \;/ (8, t) E [}. In 
the context of TRP, such consistent vectors represent approximations to the exact 
marginals of the distribution defined by the graph with cycles. 

We shall express TRP as a sequence of functional updates Tn I-t T n+1 , where 
superscript n denotes iteration number. We initialize at TO via T~t = Ii 'l/Js'I/Jt'I/Jst 
and T~ = Ii 'l/Js TItEN(S) [L X t 'l/Jst'I/Jt], where Ii denotes a normalization factor; and 
N(8) is the set of neighbors of node 8. At iteration n, we choose some spanning 
tree Ti(n) with edge set [i(n), and factor the distribution p(x; Tn) into a product 
of two terms 

ex: (la) 

ex: (lb) 

corresponding, respectively, to terms in the spanning tree; and residual terms over 
edges in [/ [i(n) removed to form Ti(n). We then perform a reparameterization 
update on pi(n) (x; Tn) - explicitly: 

pi(n) (x'; Tn) for all (s,t) E [i(n) (2) 

x, s.t(x ~ ,x;)=(x. ,xtl 

with a similar update for the single-node marginals {Ts I s E V}. These marginal 
computations can be performed efficiently by any exact tree algorithm applied to 
Ti(n). Elements of T n+1 corresponding to terms in ri(n) (x; Tn) are left unchanged 

lIn general, T need not be the actual marginals for any distribution. 



(i.e., Ts~+l = Tst for all (8, t) E E /Ei(n)) . The only restriction placed on the spanning 
tree set T1, ... ,TL is that each edge (8, t) E E belong to at least one spanning tree. 
For practical reasons, it is desirable to choose a set of spanning trees that leads to 
rapid mixing throughout the graph. A natural choice for the spanning tree index 
i(n) is the cyclic ordering, in which i(n) == n(modL) + 1. 

2.1 BP as local reparameterization 

Interestingly, BP can be reformulated in a "message-free" manner as a sequence 
of local rather than global reparameterization operations. This message-free ver­
sion of BP directly updates approximate marginals, Ts and Tst, with initial val­
ues determined from the initial messages M~t and the original compatibility func­
tions of the graphical model as T~ = Ii 'l/Js ITuEN(S) M~s for all 8 E V and 

T~t = Ii 'l/Jst'l/Js'l/Jt ITu EN(s)/t M~s ITuEN(t) /s M~t for all (8, t) E E, where Ii de­
notes a normalization factor. At iteration n, these quantities are updated according 
to the following recursions: 

(3a) 

T;'t (3b) 

The reparameterization form of BP decomposes the graph into a set of two-node 
trees (one for each edge (8, t)); performs exact inference on such tree via equa­
tion (3b); and merges the marginals from each tree via equation (3a). It can be 
shown by induction [see 13] that this simple reparameterization algorithm is equiv­
alent to the message-passing version of BP. 

2.2 Practical advantages of TRP updates 

Since a single TRP update suffices to transmit information globally throughout the 
graph, it might be expected to have better convergence properties than the purely 
local BP updates. Indeed, this has proven to be the case in various experiments that 
we have performed on two graphs (a single loop of 15 nodes, and a 7 x 7 grid). We 
find that TRP tends to converge 2 to 3 times faster than BP on average (rescaled 
for equivalent computational cost); more importantly, TRP will converge for many 
problems where BP fails [13]. Further research needs to address the optimal choice 
of trees (not necessarily spanning) in implementing TRP. 

3 Theoretical results 

The TRP perspective leads to a number of theoretical insights into approximate 
inference, including a new characterization of fixed points , an invariance property, 
and error analysis. 

3.1 Analysis of TRP updates 

Our analysis of TRP updates uses a cost function that is an approximation to the 
Kullback-Leibler divergence between p(x; T) and p(x; U) - namely, the quantity 



Xs 

Given an arbitrary U E C, we show that successive iterates {Tn} of TRP updates 
satisfy the following "Pythagorean" identity: 

G(U ;T n) = G(U ; T n+l ) + G(T n+1; T n) (4) 

which can be used to show that TRP fixed points T * satisfy the necessary conditions 
to be local minima of G subject to the constraint T * E C. The cost function G, 
though distinct from the Bethe free energy [1] , coincides with it on the constraint 
set C, thereby allowing us to establish the equivalence of TRP and BP fixed points. 

3.2 Characterization of fixed points 

From the reparameterization perspective arises an intuitive characterization of any 
TRP /BP fixed point T *. Shown in Figure l(a) is a distribution on a graph with 

T1: T2~ T3~ T1: T2~ T3~ 
T~T; T4; 

T; T; 
T5: 

T; T~ TtT; T2*T; T; T~ 

(a) Fixed point on full graph (b) Tree consistency condit ion. 

Figure 1. Illustration of fixed point consistency condition. (a) Fixed point T * = 
{T;, T;t } on the full graph with cycles. (b) Illustration of consistency condition on 
an embedded tree. The quantities {T;, T;t } must be exact marginal probabilities 
for any tree embedded within the full graph. 

cycles, parameterized according to the fixed point T * = {Ts*t, T;}. The consistency 
condition implies that if edges are removed from the full graph to form a spanning 
tree, as shown in panel (b) , then the quantities Ts*t and Ts* correspond to exact 
marginal distributions over the tree. This statement holds for any acyclic substruc­
ture embedded within the full graph with cycles - not just the spanning trees 
Tl , ... ,TL used to implement TRP. Thus, algorithms such as TRP /BP attempt 
to reparameterize a distribution on a graph with cycles so that it is consistent with 
respect to each embedded tree. 

It is remarkable that the existence of such a parameterization (though obvious for 
trees) should hold for a positive distribution on an arbitrary graph. Also noteworthy 
is the parallel to the characterization of max-product2 fixed points obtained by 
Freeman and Weiss [16]. Finally, it can be shown [13, 14] that this characterization, 
though it emerged very naturally from the TRP perspective, applies more generally 
to any constrained local minimum of the Bethe free energy, whether obtained by 
TRP /BP, or an alternative technique [e.g., 11, 12]. 

2Max-product is a related but different algorithm for computing approximate MAP 
assignments in graphs with cycles. 



3.3 Invariance of the distribution 

A fundamental property of TRP updates is that they leave invariant the full distri­
bution on the graph with cycles. This invariance follows from the decomposition of 
equation (1): in particular, the distribution pi(n) (x; Tn) is left invariant by reparam­
eterization; and TRP does not change terms in ri(n) (x; Tn). As a consequence, the 
overall distribution remains invariant - i.e., p(x; Tn) == p(x; TO) for all n. By con­
tinuity of the map T f-7 p(x; T) , it follows that any fixed point T* of the algorithm 
also satisfies p(x; T*) == p(x; TO). This fixed point invariance is also an algorithm­
independent result - in particular, all constrained local minima of the Bethe free 
energy, regardless of how they are obtained, are invariant in this manner [13, 14]. 

This invariance has a number of important consequences. For example, it places 
severe restrictions on cases (other than trees) in which TRP /BP can be exact; 
see [14] for examples. In application to the linear-Gaussian problem, it leads to an 
elementary proof of a known result [7, 8] - namely, the means must be exact if the 
BP updates converge. 

3.4 Error analysis 

Lastly, we can analyze the error arising from any TRP /BP fixed point T* on an 
arbitrary graph. Of interest are the exact single-node marginals Ps of the origi­
nal distribution p(x; TO) defined by the graph with cycles, which by invariance are 
equivalent to those of p(x; T*). Now the quantities Ts* have two distinct interpre­
tations: (a) as the TRP /BP approximations to the actual single-node marginals on 
the full graph; and (b) as the exact marginals on any embedded tree (as in Figure 1). 
This implies that the approximations T; are related to the actual marginals Ps on 
the full graph by a relatively simple perturbation - namely, removing edges from 
the full graph to reveal an embedded tree. From this observation, we can derive the 
following exact expression for the difference between the actual marginal PS;j and 
the TRP /BP approximation3 T;j: 

[{ ri(X;T*)} .J 
lEpi (x;T* ) Z(T*) - 1 J(x s = J) (5) 

where i E {1, ... ,L} is an arbitrary spanning tree index; pi and ri are defined in 
equation (1a) and (1b) respectively; Z(T*) is the partition function of p(x; T*); 
J(xs = j) is an indicator function for Xs to take the value j; and lEpi (x;T * ) denotes 
expectation using the distribution pi(x; T*). 

Unfortunately, while the tree distribution pi (x; T*) is tractable, the argument of the 
expectation includes all terms r i (x ; T*) removed from the original graph to form 
spanning tree Ti. Moreover, computing the partition function Z (T*) is intractable. 
These difficulties motivate the development of bounds on the error. 

In [14], we use convexity arguments to derive a particular set of bounds on the 
approximation error. Such error bounds, in turn, can be used to compute upper 
and lower bounds on the actual marginals Ps;l. Figure 2 illustrates the TRP /BP 
approximation, as well as these bounds on the actual marginals for a binary process 
on a 3 x 3 grid under two conditions. Note that the tightness of the bounds is closely 
related to approximation accuracy. Although it is unlikely that these bounds will 
remain quantitatively useful for general problems on large graphs, they may still 
yield useful qualitative information. 

3The notation T;;j denotes the /h element of the vector T; . 
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Figure 2. Behavior of bounds on 3 x 3 grid. Plotted are the actual marginals P s;l 

versus the TRP approximations T;'l> as well as upper and lower bounds on the 
actual marginals. (a) For weak potentials, TRP /BP approximation is excellent; 
bounds on exact marginals are tight. (b) For strong mixed potentials, approxima­
tion is poor. Bounds are looser, and for certain nodes, the TRP /BP approximation 
lies above the upper bounds on the actual marginal P8 ;1 . 

Much of the analysis of this paper -- including reparameterization, invariance, 
and error analysis -- can be extended [see 14] to more structured approximation 
algorithms [e.g., 1, 2]. Figure 3 illustrates the use of bounds in assessing when to 
use a more structured approximation. For strong attractive potentials on the 3 x 3 
grid, the TRP /BP approximation in panel (a) is very poor, as reflected by relatively 
loose bounds on the actual marginals. In contrast, the Kikuchi approximation in 
(b) is excellent, as revealed by the tightness of the bounds. 

4 Discussion 

The TRP framework of this paper provides a new view of approximate inference; 
and makes both practical and conceptual contributions. On the practical side, we 
find that more global TRP updates tend to have better convergence properties than 
local BP updates. The freedom in tree choice leads to open problems of a graph­
theoretic nature: e.g., how to choose trees so as to guarantee convergence, or to 
optimize the rate of convergence? 

Among the conceptual insights provided by the reparameterization perspective are 
a new characterization of fixed points; an intrinsic invariance; and analysis of the 
approximation error. Importantly, most of these results apply to any constrained 
local minimum of the Bethe free energy, and have natural extensions [see 14] to 
more structured approximations [e.g., 1, 2]. 
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