
Adaptive N earest Neighbor Classification
using Support Vector Machines

Carlotta Domeniconi, Dimitrios Gunopulos
Dept. of Computer Science, University of California, Riverside, CA 92521

{ carlotta, dg} @cs.ucr.edu

Abstract

The nearest neighbor technique is a simple and appealing method
to address classification problems. It relies on the assumption of
locally constant class conditional probabilities. This assumption
becomes invalid in high dimensions with a finite number of exam­
ples due to the curse of dimensionality. We propose a technique
that computes a locally flexible metric by means of Support Vector
Machines (SVMs). The maximum margin boundary found by the
SVM is used to determine the most discriminant direction over the
query's neighborhood. Such direction provides a local weighting
scheme for input features. We present experimental evidence of
classification performance improvement over the SVM algorithm
alone and over a variety of adaptive learning schemes, by using
both simulated and real data sets.

1 Introduction

In a classification problem, we are given J classes and l training observations. The
training observations consist of n feature measurements x = (Xl,'" ,Xn)T E ~n
and the known class labels j = 1, ... , J. The goal is to predict the class label of a
given query q.

The K nearest neighbor classification method [4, 13, 16] is a simple and appealing
approach to this problem: it finds the K nearest neighbors of q in the training
set, and then predicts the class label of q as the most frequent one occurring in
the K neighbors. It has been shown [5 , 8] that the one nearest neighbor rule has
asymptotic error rate that is at most twice the Bayes error rate, independent of
the distance metric used. The nearest neighbor rule becomes less appealing with
finite training samples, however. This is due to the curse of dimensionality [2].
Severe bias can be introduced in the nearest neighbor rule in a high dimensional
input feature space with finite samples. As such, the choice of a distance measure
becomes crucial in determining the outcome of nearest neighbor classification. The
commonly used Euclidean distance implies that the input space is isotropic, which
is often invalid and generally undesirable in many practical applications.

Several techniques [9 , 10, 7] have been proposed to try to minimize bias in high di­
mensions by using locally adaptive mechanisms. The "lazy learning" approach used

by these methods, while appealing in many ways, requires a considerable amount of
on-line computation, which makes it difficult for such techniques to scale up to large
data sets. The feature weighting scheme they introduce, in fact , is query based and
is applied on-line when the test point is presented to the "lazy learner" . In this pa­
per we propose a locally adaptive metric classification method which, although still
founded on a query based weighting mechanism, computes off-line the information
relevant to define local weights.

Our technique uses support vector machines (SVMs) as a guidance for the process of
defining a local flexible metric. SVMs have been successfully used as a classification
tool in a variety of areas [11, 3, 14], and the maximum margin boundary they provide
has been proved to be optimal in a structural risk minimization sense. The solid
theoretical foundations that have inspired SVMs convey desirable computational
and learning theoretic properties to the SVM's learning algorithm, and therefore
SVMs are a natural choice for seeking local discriminant directions between classes.

The solution provided by SVMs allows to determine locations in input space where
class conditional probabilities are likely to be not constant, and guides the extraction
of local information in such areas. This process produces highly stretched neigh­
borhoods along boundary directions when the query is close to the boundary. As a
result, the class conditional probabilities tend to be constant in the modified neigh­
borhoods, whereby better classification performance can be achieved. The amount
of elongation-constriction decays as the query moves further from the boundary
vicinity.

2 Feature Weighting

SVMs classify patterns according to the sign(f(x)), where f(x)
L:~=l (XiYiK(Xi, x) - b, K(x ,y) = cpT(x). cp(y) (kernel junction), and cp: 3(n -+ 3(N
is a mapping of the input vectors into a higher dimensional feature space. Here
we assume Xi E 3(n, i = I, . . . ,l, and Yi E {-I,I}. Clearly, in the general case
of a non-linear feature mapping cp, the SVM classifier gives a non-linear boundary
f(x) = 0 in input space. The gradient vector lld = "Vdj, computed at any point
d of the level curve f(x) = 0, gives the perpendicular direction to the decision
boundary in input space at d. As such, the vector lld identifies the orientation in
input space on which the projected training data are well separated, locally over
d's neighborhood. Therefore, the orientation given by lld, and any orientation close
to it, is highly informative for the classification task at hand, and we can use such
information to define a local measure of feature relevance.

Let q be a query point whose class label we want to predict. Suppose q is close
to the boundary, which is where class conditional probabilities become locally non
uniform, and therefore estimation of local feature relevance becomes crucial. Let
d be the closest point to q on the boundary f(x) = 0: d = argminp Ilq - pll ,
subject to the constraint f(p) = O. Then we know that the gradient lld identifies a
direction along which data points between classes are well separated.

As a consequence, the subspace spanned by the orientation lld, locally at q, is
likely to contain points having the same class label as q . Therefore, when applying
a nearest neighbor rule at q, we desire to stay close to q along the lld direction,
because that is where it is likely to find points similar to q in terms of class pos­
terior probabilities. Distances should be constricted (large weight) along lld and
along directions close to it. The farther we move from the lld direction, the less
discriminant the correspondent orientation becomes. This means that class labels
are likely not to change along those orientations, and distances should be elongated

(small weight) , thus including in q's neighborhood points which are likely to be
similar to q in terms of the class conditional probabilities.

Formally, we can measure how close a direction t is to lld by considering the dot
product lla ·t . In particular, by denoting with Uj the unit vector along input feature
j, for j = 1, . .. , n, we can define a measure of relevance for feature j, locally at q
(and therefore at d), as Rj(q) == Iu] . lldl = Ind,j l, where lld = (nd,l,'" ,nd,n)T.

The measure of feature relevance, as a weighting scheme, can then be given by the
following exponential weighting scheme: Wj(q) = exp(ARj(q))1 2::7=1 exp(ARi(q)),
where A is a parameter that can be chosen to maximize (minimize) the influence of
R j on Wj' When A = 0 we have Wj = lin, thereby ignoring any difference between
the Rj's. On the other hand, when A is large a change in R j will be exponentially re­
flected in Wj' The exponential weighting scheme conveys stability to the method by
preventing neighborhoods to extend infinitely in any direction. This is achieved by
avoiding zero weights, which would instead be allowed by linear or quadratic weight­
ings. Thus, the exponential weighting scheme can be used as weights associated with
features for weighted distance computation D(x, y) =)2::7=1 Wi(Xi - Yi)2. These
weights enable the neighborhood to elongate less important feature dimensions, and,
at the same time, to constrict the most influential ones. Note that the technique is
query-based because weightings depend on the query.

3 Local Flexible Metric Classification based on SVMs

To estimate the orientation of local boundaries, we move from the query point along
the input axes at distances proportional to a given small step (whose initial value
can be arbitrarily small, and doubled at each iteration till the boundary is crossed).
We stop as soon as the boundary is crossed along an input axis i, i.e. when a point
Pi is reached that satisfies the condition sign(f(q)) x sign(f(pi)) = -1. Given Pi,
we can get arbitrarily close to the boundary by moving at (arbitrarily) small steps
along the segment that joins Pi to q.

Let us denote with d i the intercepted point on the boundary along direction i. We
then approximate lld with the gradient vector lld i = \7 d i f, computed at d i .

We desire that the parameter A in the exponential weighting scheme increases as the
distance of q from the boundary decreases. By using the knowledge that support
vectors are mostly located around the boundary surface, we can estimate how close
a query point q is to the boundary by computing its distance from the closest non
bounded support vector: Bq = minsi Ilq - si ll, where the minimum is taken over
the non bounded (0 < D:i < C) support vectors Si. Following the same principle,
in [1] the spatial resolution around the boundary is increased by enlarging volume
elements locally in neighborhoods of support vectors. Then, we can achieve our goal
by setting A = D - B q , where D is a constant input parameter of the algorithm. In
our experiments we set D equal to the approximated average distance between the
training points Xk and the boundary: D = t 2::xk {minsi Ilxk - sill}. If A becomes
negative it is set to zero.

By doing so the value of A nicely adapts to each query point according to its location
with respect to the boundary. The closer q is to the decision boundary, the higher
the effect of the Rj's values will be on distances computation.

We observe that this principled guideline for setting the parameters of our technique
takes advantage of the sparseness representation of the solution provided by the
SVM. In fact, for each query point q, in order to compute Bq we only need to
consider the support vectors, whose number is typically small compared to the

Input: Decision boundary f(x) = a produced by a SVM; query
point q and parameter K.

1. Compute the approximated closest point d i to q on the bound-
ary;

2. Compute the gradient vector ndi = \l dJ;
3. Set feature relevance values Rj(q) = Indi, jl for j = 1, . . . ,n;
4. Estimate the distance of q from the boundary as: Bq =

minsi Ilq - sill;
5. Set A = D - B q , where D = t EXk {minsi Ilxk - sill};

6. Set Wj(q) = exp(ARj(q))/ E~=l exp(ARi(q)), for j
1, ... ,n;

7. Use the resulting w for K-nearest neighbor classification at
the query point q.

Figure 1: The LFM-SVM algorithm

total number of training examples. Furthermore, the computation of D's value is
carried out once and off-line.

The resulting local flexible metric technique based on SVMs (LFM-SVM) is summa­
rized in Figure 1. The algorithm has only one adjustable tuning parameter, namely
the number K of neighbors in the final nearest neighbor rule. This parameter is
common to all nearest neighbor classification techniques.

4 Experimental Results

In the following we compare several classification methods using both simulated
and real data. We compare the following classification approaches: (1) LFM-SVM
algorithm described in Figure 1. SV Mlight [12] with radial basis kernels is used
to build the SVM classifier; (2) RBF-SVM classifier with radial basis kernels. We
used SV Mlight [12], and set the value of"(in K(Xi' x) = e-r llxi-xI12 equal to the
optimal one determined via cross-validation. Also the value of C for the soft-margin
classifier is optimized via cross-validation. The output of this classifier is the input
of LFM-SVM; (3) ADAMENN-adaptive metric nearest neighbor technique [7]. It
uses the Chi-squared distance in order to estimate to which extent each dimension
can be relied on to predict class posterior probabilities; (4) Machete [9]. It is a
recursive partitioning procedure, in which the input variable used for splitting at
each step is the one that maximizes the estimated local relevance. Such relevance
is measured in terms of the improvement in squared prediction error each feature is
capable to provide; (5) Scythe [9]. It is a generalization of the machete algorithm, in
which the input variables influence each split in proportion to their estimated local
relevance; (6) DANN-discriminant adaptive nearest neighbor classification [10]. It
is an adaptive nearest neighbor classification method based on linear discriminant
analysis. It computes a distance metric as a product of properly weighted within
and between sum of squares matrices; (7) Simple K-NN method using the Euclidean
distance measure; (8) C4.5 decision tree method [15].

In all the experiments, the features are first normalized over the training data to
have zero mean and unit variance, and the test data features are normalized using
the corresponding training mean and variance. Procedural parameters (including

K) for each method were determined empirically through cross-validation.

4.1 Experiments on Simulated Data

For all simulated data, 10 independent training samples of size 200 were generated.
For each of these, an additional independent test sample consisting of 200 obser­
vations was generated. These test data were classified by each competing method
using the respective training data set. Error rates computed over all 2,000 such
classifications are reported in Table 1.

The Problems. (1) Multi-Gaussians. The data set consists of n = 2 input
features, l = 200 training data, and J = 2 classes. Each class contains two spher­
ical bivariate normal subclasses, having standard deviation 1. The mean vectors
for one class are (-3/4, -3) and (3/4,3); whereas for the other class are (3, -3)
and (-3,3). For each class, data are evenly drawn from each of the two normal
subclasses. The first column of Table 1 shows the results for this problem. The
standard deviations are: 0.17, 0.01, 0.01, 0.01, 0.01 0.01, 0.01 and 1.50, respec­
tively. (2) Noisy-Gaussians. The data for this problem are generated as in the
previous example, but augmented with four predictors having independent stan­
dard Gaussian distributions. They serve as noise. Results are shown in the second
column of Table 1. The standard deviations are: 0.18, 0.01, 0.02, 0.01, 0.01, 0.01,
0.01 and 1.60, respectively.

Results. Table 1 shows that all methods have similar performances for the Multi­
Gaussians problem, with C4.5 being the worst performer. When the noisy pre­
dictors are added to the problem (NoisyGaussians), we observe different levels of
deterioration in performance among the eight methods. LFM-SVM shows the most
robust behavior in presence of noise. K-NN is instead the worst performer. In
Figure 2 we plot the performances of LFM-SVM and RBF-SVM as a function of an
increasing number of noisy features (for the same MultiGaussians problem). The
standard deviations for RBF -SVM (in order of increasing number of noisy features)
are: 0.01, 0.01 , 0.03, 0.03, 0.03 and 0.03. The standard deviations for LFM-SVM
are: 0.17,0.18,0.2,0.3,0.3 and 0.3. The LFM-SVM technique shows a considerable
improvement over RBF -SVM as the amount of noise increases.

Table 1: Average classification error rates for simulated and real data.

MultiGauss NoisyGauss Iris Sonar Liver Vote Breast OQ Pima
LFM-SVM 3.3 3.4 4.0 11.0 28.1 2.6 3.0 3.5 19.3
RBF-SVM 3.3 4.1 4.0 12.0 26.1 3.0 3.1 3.4 21.3

ADAMENN 3.4 4.1 3.0 9.1 30.7 3.0 3.2 3.1 20.4
Machete 3.4 4.3 5.0 21.2 27.5 3.4 3.5 7.4 20.4
Scythe 3.4 4.8 4.0 16.3 27.5 3.4 2.7 5.0 20.0
DANN 3.7 4.7 6.0 1.1 30.1 3.0 2.2 4.0 22.2
K-NN 3.3 7.0 6.0 12.5 32.5 7.8 2.7 5.4 24.2
C4.5 5.0 5.1 8.0 23.1 38.3 3.4 4.1 9.2 23.8

4.2 Experiments on Real Data

In our experiments we used seven different real data sets. They are all taken from
DCI Machine Learning Repository at http://www.cs.uci.edu/,,,-,mlearn/
MLRepository.html. For a description of the data sets see [6]. For the Iris, Sonar,
Liver and Vote data we perform leave-one-out cross-validation to measure perfor­
mance, since the number of available data is limited for these data sets. For the

36'--'--'---r--'--~--'--'--~--.--'--~
34
32
30
28
26
24
22
20
18
16
14
12
10
8
6

~ ~~=='P'-

LFM-SVM --+-­
RBF-SVM ---)(---

O L-~--~--~~--~--~~--~--~~--~

o 10 12 14 16 18 20 22

Number of Noisy Variables

Figure 2: Average Error Rates of LFM-SVM and RBF-SVM as a function of an
increasing number of noisy predictors.

i J. T I I I - 1-

~ • • -- ~ -""'!"" - -:E :E z " i z z 3 z 1j z z
~ > OJ "" ;l :z :E ~ Q '" "' "" "" "

Q
..J

""

Figure 3: Performance distributions for real data.

Breast, OQ-Ietter and Pima data we randomly generated five independent training
sets of size 200. For each of these, an additional independent test sample consisting
of 200 observations was generated. Table 1 (columns 3-9) shows the cross-validated
error rates for the eight methods under consideration on the seven real data. The
standard deviation values are as follows. Breast data: 0.2, 0.2, 0.2, 0.2, 0.2, 0.9, 0.9
and 0.9, respectively. OQ data: 0.2 , 0.2 , 0.2, 0.3, 0.2 , 1.1 , 1.5 and 2.1 , respectively.
Pima data: 0.4, 0.4, 0.4, 0.4, 0.4, 2.4, 2.1 and 0.7, respectively.

Results. Table 1 shows that LFM-SVM achieves the best performance in 2/7 of the
real data sets; in one case it shows the second best performance, and in the remaining
four its error rate is still quite close to the best one. Following Friedman [9], we
capture robustness by computing the ratio bm of the error rate em of method m and
the smallest error rate over all methods being compared in a particular example:
bm = emf minl~k~8 ek·

Figure 3 plots the distribution of bm for each method over the seven real data sets.
The dark area represents the lower and upper quartiles of the distribution that are
separated by the median. The outer vertical lines show the entire range of values for
the distribution. The spread of the error distribution for LFM-SVM is narrow and
close to one. The results clearly demonstrate that LFM-SVM (and ADAMENN)
obtained the most robust performance over the data sets.

The poor performance of the machete and C4.5 methods might be due to the greedy
strategy they employ. Such recursive peeling strategy removes at each step a subset
of data points permanently from further consideration. As a result, changes in an
early split, due to any variability in parameter estimates, can have a significant
impact on later splits , thereby producing different terminal regions. This makes

predictions highly sensitive to the sampling fluctuations associated with the random
nature of the process that produces the traning data, thus leading to high variance
predictions. The scythe algorithm, by relaxing the winner-take-all splitting strategy
of the machete algorithm, mitigates the greedy nature of the approach, and thereby
achieves better performance.

In [10], the authors show that the metric employed by the DANN algorithm approx­
imates the weighted Chi-squared distance, given that class densities are Gaussian
and have the same covariance matrix. As a consequence, we may expect a degra­
dation in performance when the data do not follow Gaussian distributions and are
corrupted by noise , which is likely the case in real scenarios like the ones tested
here.

We observe that the sparse solution given by SVMs provides LFM-SVM with prin­
cipled guidelines to efficiently set the input parameters. This is an important ad­
vantage over ADAMENN, which has six tunable input parameters. Furthermore,
LFM-SVM speeds up the classification process since it applies the nearest neighbor
rule only once, whereas ADAMENN applies it at each point within a region centered
at the query. We also observe that the construction of the SVM for LFM-SVM is
carried out off-line only once, and there exist algorithmic and computational results
which make SVM training practical also for large-scale problems [12].

The LFM-SVM offers performance improvements over the RBF-SVM algorithm
alone, for both the (noisy) simulated and real data sets. The reason for such perfor­
mance gain may rely on the effect of our local weighting scheme on the separability
of classes, and therefore on the margin, as shown in [6]. Assigning large weights to
input features close to the gradient direction, locally in neighborhoods of support
vectors, corresponds to increase the spatial resolution along those orientations, and
therefore to improve the separability of classes. As a consequence, better classifica­
tion results can be achieved as demonstrated in our experiments.

5 Related Work

In [1], Amari and Wu improve support vector machine classifiers by modifying
kernel functions. A primary kernel is first used to obtain support vectors. The
kernel is then modified in a data dependent way by using the support vectors: the
factor that drives the transformation has larger values at positions close to support
vectors. The modified kernel enlarges the spatial resolution around the boundary
so that the separability of classes is increased.

The resulting transformation depends on the distance of data points from the sup­
port vectors , and it is therefore a local transformation, but is independent of the
boundary's orientation in input space. Likewise, our transformation metric de­
pends , through the factor A, on the distance of the query point from the support
vectors. Moreover, since we weight features, our metric is directional, and depends
on the orientation of local boundaries in input space. This dependence is driven
by our measure of feature relevance, which has the effect of increasing the spatial
resolution along discriminant directions around the boundary.

6 Conclusions

We have described a locally adaptive metric classification method and demonstrated
its efficacy through experimental results. The proposed technique offers perfor­
mance improvements over the SVM alone, and has the potential of scaling up to

large data sets. It speeds up, in fact, the classification process by computing off­
line the information relevant to define local weights, and by applying the nearest
neighbor rule only once.

Acknowledgments

This research has been supported by the National Science Foundation under grants
NSF CAREER Award 9984729 and NSF IIS-9907477, by the US Department of
Defense, and a research award from AT&T.

References

[1] S. Amari and S. Wu, "Improving support vector machine classifiers by modifying
kernel functions", Neural Networks, 12, pp. 783-789, 1999.

[2] R.E. Bellman, Adaptive Control Processes. Princeton Univ. Press, 1961.

[3] M. Brown, W. Grundy, D. Lin, N. Cristianini, C. Sugnet, T. Furey, M. Ares, and
D. Haussler, "Knowledge-based analysis of microarray gene expressions data using
support vector machines", Tech. Report, University of California in Santa Cruz,
1999.

[4] W.S. Cleveland and S.J. Devlin, "Locally Weighted Regression: An Approach to
Regression Analysis by Local Fitting", J. Amer. Statist. Assoc. 83, 596-610, 1988

[5] T.M. Cover and P.E. Hart, "Nearest Neighbor Pattern Classification", IEEE Trans.
on Information Theory, pp. 21-27, 1967.

[6] C. Domeniconi and D. Gunopulos, "Adaptive Nearest Neighbor Classification using
Support Vector Machines", Tech. Report UCR-CSE-01-04, Dept. of Computer Sci­
ence, University of California, Riverside, June 200l.

[7] C. Domeniconi, J. Peng, and D. Gunopulos, "An Adaptive Metric Machine for Pattern
Classification", Advances in Neural Information Processing Systems, 2000.

[8] R.O. Duda and P.E. Hart, Pattern Classification and Scene Analysis. John Wiley &
Sons, Inc., 1973.

[9] J.H. Friedman "Flexible Metric Nearest Neighbor Classification", Tech. Report, Dept.
of Statistics, Stanford University, 1994.

[10] T. Hastie and R. Tibshirani, "Discriminant Adaptive Nearest Neighbor Classifica­
tion", IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 18, No.6, pp.
607-615, 1996.

[11] T. Joachims, "Text categorization with support vector machines", Pmc. of European
Conference on Machine Learning, 1998.

[12] T. Joachims, "Making large-scale SVM learning practical" Advances in Kernel Meth­
ods - Support Vector Learning, B. Sch6lkopf and C. Burger and A. Smola (ed.), MIT­
Press, 1999. http://www-ai.cs.uni-dortmund.de/thorsten/svm_light.html

[13] D.G. Lowe, "Similarity Metric Learning for a Variable-Kernel Classifier", Neural Com­
putation 7(1):72-85, 1995.

[14] E. Osuna, R. Freund, and F. Girosi, "Training support vector machines: An applica­
tion to face detection", Pmc. of Computer Vision and Pattern Recognition, 1997.

[15] J.R. Quinlan, C4.5: Programs for Machine Learning. Morgan-Kaufmann Publishers,
Inc., 1993.

[16] C.J. Stone, Nonparametric regression and its applications (with discussion). Ann.
Statist. 5, 595, 1977.

