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Abstract 

The nearest neighbor technique is a simple and appealing method 
to address classification problems. It relies on the assumption of 
locally constant class conditional probabilities. This assumption 
becomes invalid in high dimensions with a finite number of exam­
ples due to the curse of dimensionality. We propose a technique 
that computes a locally flexible metric by means of Support Vector 
Machines (SVMs). The maximum margin boundary found by the 
SVM is used to determine the most discriminant direction over the 
query's neighborhood. Such direction provides a local weighting 
scheme for input features. We present experimental evidence of 
classification performance improvement over the SVM algorithm 
alone and over a variety of adaptive learning schemes, by using 
both simulated and real data sets. 

1 Introduction 

In a classification problem, we are given J classes and l training observations. The 
training observations consist of n feature measurements x = (Xl,'" ,Xn)T E ~n 
and the known class labels j = 1, ... , J. The goal is to predict the class label of a 
given query q. 

The K nearest neighbor classification method [4, 13, 16] is a simple and appealing 
approach to this problem: it finds the K nearest neighbors of q in the training 
set, and then predicts the class label of q as the most frequent one occurring in 
the K neighbors. It has been shown [5 , 8] that the one nearest neighbor rule has 
asymptotic error rate that is at most twice the Bayes error rate, independent of 
the distance metric used. The nearest neighbor rule becomes less appealing with 
finite training samples, however. This is due to the curse of dimensionality [2]. 
Severe bias can be introduced in the nearest neighbor rule in a high dimensional 
input feature space with finite samples. As such, the choice of a distance measure 
becomes crucial in determining the outcome of nearest neighbor classification. The 
commonly used Euclidean distance implies that the input space is isotropic, which 
is often invalid and generally undesirable in many practical applications. 

Several techniques [9 , 10, 7] have been proposed to try to minimize bias in high di­
mensions by using locally adaptive mechanisms. The "lazy learning" approach used 



by these methods, while appealing in many ways, requires a considerable amount of 
on-line computation, which makes it difficult for such techniques to scale up to large 
data sets. The feature weighting scheme they introduce, in fact , is query based and 
is applied on-line when the test point is presented to the "lazy learner" . In this pa­
per we propose a locally adaptive metric classification method which, although still 
founded on a query based weighting mechanism, computes off-line the information 
relevant to define local weights. 

Our technique uses support vector machines (SVMs) as a guidance for the process of 
defining a local flexible metric. SVMs have been successfully used as a classification 
tool in a variety of areas [11, 3, 14], and the maximum margin boundary they provide 
has been proved to be optimal in a structural risk minimization sense. The solid 
theoretical foundations that have inspired SVMs convey desirable computational 
and learning theoretic properties to the SVM's learning algorithm, and therefore 
SVMs are a natural choice for seeking local discriminant directions between classes. 

The solution provided by SVMs allows to determine locations in input space where 
class conditional probabilities are likely to be not constant, and guides the extraction 
of local information in such areas. This process produces highly stretched neigh­
borhoods along boundary directions when the query is close to the boundary. As a 
result, the class conditional probabilities tend to be constant in the modified neigh­
borhoods, whereby better classification performance can be achieved. The amount 
of elongation-constriction decays as the query moves further from the boundary 
vicinity. 

2 Feature Weighting 

SVMs classify patterns according to the sign(f(x)), where f(x) 
L:~=l (XiYiK(Xi, x) - b, K(x ,y) = cpT(x). cp(y) (kernel junction), and cp: 3(n -+ 3(N 
is a mapping of the input vectors into a higher dimensional feature space. Here 
we assume Xi E 3(n, i = I, . . . ,l, and Yi E {-I,I}. Clearly, in the general case 
of a non-linear feature mapping cp, the SVM classifier gives a non-linear boundary 
f(x) = 0 in input space. The gradient vector lld = "Vdj, computed at any point 
d of the level curve f(x) = 0, gives the perpendicular direction to the decision 
boundary in input space at d. As such, the vector lld identifies the orientation in 
input space on which the projected training data are well separated, locally over 
d's neighborhood. Therefore, the orientation given by lld, and any orientation close 
to it, is highly informative for the classification task at hand, and we can use such 
information to define a local measure of feature relevance. 

Let q be a query point whose class label we want to predict. Suppose q is close 
to the boundary, which is where class conditional probabilities become locally non 
uniform, and therefore estimation of local feature relevance becomes crucial. Let 
d be the closest point to q on the boundary f(x) = 0: d = argminp Ilq - pll , 
subject to the constraint f(p) = O. Then we know that the gradient lld identifies a 
direction along which data points between classes are well separated. 

As a consequence, the subspace spanned by the orientation lld, locally at q, is 
likely to contain points having the same class label as q . Therefore, when applying 
a nearest neighbor rule at q, we desire to stay close to q along the lld direction, 
because that is where it is likely to find points similar to q in terms of class pos­
terior probabilities. Distances should be constricted (large weight) along lld and 
along directions close to it. The farther we move from the lld direction, the less 
discriminant the correspondent orientation becomes. This means that class labels 
are likely not to change along those orientations, and distances should be elongated 



(small weight) , thus including in q's neighborhood points which are likely to be 
similar to q in terms of the class conditional probabilities. 

Formally, we can measure how close a direction t is to lld by considering the dot 
product lla ·t . In particular, by denoting with Uj the unit vector along input feature 
j, for j = 1, . .. , n, we can define a measure of relevance for feature j, locally at q 
(and therefore at d), as Rj(q) == Iu] . lldl = Ind,j l, where lld = (nd,l,'" ,nd,n)T. 

The measure of feature relevance, as a weighting scheme, can then be given by the 
following exponential weighting scheme: Wj(q) = exp(ARj(q))1 2::7=1 exp(ARi(q)), 
where A is a parameter that can be chosen to maximize (minimize) the influence of 
R j on Wj' When A = 0 we have Wj = lin, thereby ignoring any difference between 
the Rj's. On the other hand, when A is large a change in R j will be exponentially re­
flected in Wj' The exponential weighting scheme conveys stability to the method by 
preventing neighborhoods to extend infinitely in any direction. This is achieved by 
avoiding zero weights, which would instead be allowed by linear or quadratic weight­
ings. Thus, the exponential weighting scheme can be used as weights associated with 
features for weighted distance computation D(x, y) = )2::7=1 Wi(Xi - Yi)2. These 
weights enable the neighborhood to elongate less important feature dimensions, and, 
at the same time, to constrict the most influential ones. Note that the technique is 
query-based because weightings depend on the query. 

3 Local Flexible Metric Classification based on SVMs 

To estimate the orientation of local boundaries, we move from the query point along 
the input axes at distances proportional to a given small step (whose initial value 
can be arbitrarily small, and doubled at each iteration till the boundary is crossed). 
We stop as soon as the boundary is crossed along an input axis i, i.e. when a point 
Pi is reached that satisfies the condition sign(f(q)) x sign(f(pi)) = -1. Given Pi, 
we can get arbitrarily close to the boundary by moving at (arbitrarily) small steps 
along the segment that joins Pi to q. 

Let us denote with d i the intercepted point on the boundary along direction i. We 
then approximate lld with the gradient vector lld i = \7 d i f, computed at d i . 

We desire that the parameter A in the exponential weighting scheme increases as the 
distance of q from the boundary decreases. By using the knowledge that support 
vectors are mostly located around the boundary surface, we can estimate how close 
a query point q is to the boundary by computing its distance from the closest non 
bounded support vector: Bq = minsi Ilq - si ll, where the minimum is taken over 
the non bounded (0 < D:i < C) support vectors Si. Following the same principle, 
in [1] the spatial resolution around the boundary is increased by enlarging volume 
elements locally in neighborhoods of support vectors. Then, we can achieve our goal 
by setting A = D - B q , where D is a constant input parameter of the algorithm. In 
our experiments we set D equal to the approximated average distance between the 
training points Xk and the boundary: D = t 2::xk {minsi Ilxk - sill}. If A becomes 
negative it is set to zero. 

By doing so the value of A nicely adapts to each query point according to its location 
with respect to the boundary. The closer q is to the decision boundary, the higher 
the effect of the Rj's values will be on distances computation. 

We observe that this principled guideline for setting the parameters of our technique 
takes advantage of the sparseness representation of the solution provided by the 
SVM. In fact, for each query point q, in order to compute Bq we only need to 
consider the support vectors, whose number is typically small compared to the 



Input: Decision boundary f(x) = a produced by a SVM; query 
point q and parameter K. 

1. Compute the approximated closest point d i to q on the bound-
ary; 

2. Compute the gradient vector ndi = \l dJ; 
3. Set feature relevance values Rj(q) = Indi, jl for j = 1, . . . ,n; 
4. Estimate the distance of q from the boundary as: Bq = 

minsi Ilq - sill; 
5. Set A = D - B q , where D = t EXk {minsi Ilxk - sill}; 

6. Set Wj(q) = exp(ARj(q))/ E~=l exp(ARi(q)), for j 
1, ... ,n; 

7. Use the resulting w for K-nearest neighbor classification at 
the query point q. 

Figure 1: The LFM-SVM algorithm 

total number of training examples. Furthermore, the computation of D's value is 
carried out once and off-line. 

The resulting local flexible metric technique based on SVMs (LFM-SVM) is summa­
rized in Figure 1. The algorithm has only one adjustable tuning parameter, namely 
the number K of neighbors in the final nearest neighbor rule. This parameter is 
common to all nearest neighbor classification techniques. 

4 Experimental Results 

In the following we compare several classification methods using both simulated 
and real data. We compare the following classification approaches: (1) LFM-SVM 
algorithm described in Figure 1. SV Mlight [12] with radial basis kernels is used 
to build the SVM classifier; (2) RBF-SVM classifier with radial basis kernels. We 
used SV Mlight [12], and set the value of"( in K(Xi' x) = e-r llxi-xI12 equal to the 
optimal one determined via cross-validation. Also the value of C for the soft-margin 
classifier is optimized via cross-validation. The output of this classifier is the input 
of LFM-SVM; (3) ADAMENN-adaptive metric nearest neighbor technique [7]. It 
uses the Chi-squared distance in order to estimate to which extent each dimension 
can be relied on to predict class posterior probabilities; (4) Machete [9]. It is a 
recursive partitioning procedure, in which the input variable used for splitting at 
each step is the one that maximizes the estimated local relevance. Such relevance 
is measured in terms of the improvement in squared prediction error each feature is 
capable to provide; (5) Scythe [9]. It is a generalization of the machete algorithm, in 
which the input variables influence each split in proportion to their estimated local 
relevance; (6) DANN-discriminant adaptive nearest neighbor classification [10]. It 
is an adaptive nearest neighbor classification method based on linear discriminant 
analysis. It computes a distance metric as a product of properly weighted within 
and between sum of squares matrices; (7) Simple K-NN method using the Euclidean 
distance measure; (8) C4.5 decision tree method [15]. 

In all the experiments, the features are first normalized over the training data to 
have zero mean and unit variance, and the test data features are normalized using 
the corresponding training mean and variance. Procedural parameters (including 



K) for each method were determined empirically through cross-validation. 

4.1 Experiments on Simulated Data 

For all simulated data, 10 independent training samples of size 200 were generated. 
For each of these, an additional independent test sample consisting of 200 obser­
vations was generated. These test data were classified by each competing method 
using the respective training data set. Error rates computed over all 2,000 such 
classifications are reported in Table 1. 

The Problems. (1) Multi-Gaussians. The data set consists of n = 2 input 
features, l = 200 training data, and J = 2 classes. Each class contains two spher­
ical bivariate normal subclasses, having standard deviation 1. The mean vectors 
for one class are (-3/4, -3) and (3/4,3); whereas for the other class are (3, -3) 
and (-3,3). For each class, data are evenly drawn from each of the two normal 
subclasses. The first column of Table 1 shows the results for this problem. The 
standard deviations are: 0.17, 0.01, 0.01, 0.01, 0.01 0.01, 0.01 and 1.50, respec­
tively. (2) Noisy-Gaussians. The data for this problem are generated as in the 
previous example, but augmented with four predictors having independent stan­
dard Gaussian distributions. They serve as noise. Results are shown in the second 
column of Table 1. The standard deviations are: 0.18, 0.01, 0.02, 0.01, 0.01, 0.01, 
0.01 and 1.60, respectively. 

Results. Table 1 shows that all methods have similar performances for the Multi­
Gaussians problem, with C4.5 being the worst performer. When the noisy pre­
dictors are added to the problem (NoisyGaussians), we observe different levels of 
deterioration in performance among the eight methods. LFM-SVM shows the most 
robust behavior in presence of noise. K-NN is instead the worst performer. In 
Figure 2 we plot the performances of LFM-SVM and RBF-SVM as a function of an 
increasing number of noisy features (for the same MultiGaussians problem). The 
standard deviations for RBF -SVM (in order of increasing number of noisy features) 
are: 0.01, 0.01 , 0.03, 0.03, 0.03 and 0.03. The standard deviations for LFM-SVM 
are: 0.17,0.18,0.2,0.3,0.3 and 0.3. The LFM-SVM technique shows a considerable 
improvement over RBF -SVM as the amount of noise increases. 

Table 1: Average classification error rates for simulated and real data. 

MultiGauss NoisyGauss Iris Sonar Liver Vote Breast OQ Pima 
LFM-SVM 3.3 3.4 4.0 11.0 28.1 2.6 3.0 3.5 19.3 
RBF-SVM 3.3 4.1 4.0 12.0 26.1 3.0 3.1 3.4 21.3 

ADAMENN 3.4 4.1 3.0 9.1 30.7 3.0 3.2 3.1 20.4 
Machete 3.4 4.3 5.0 21.2 27.5 3.4 3.5 7.4 20.4 
Scythe 3.4 4.8 4.0 16.3 27.5 3.4 2.7 5.0 20.0 
DANN 3.7 4.7 6.0 1.1 30.1 3.0 2.2 4.0 22.2 
K-NN 3.3 7.0 6.0 12.5 32.5 7.8 2.7 5.4 24.2 
C4.5 5.0 5.1 8.0 23.1 38.3 3.4 4.1 9.2 23.8 

4.2 Experiments on Real Data 

In our experiments we used seven different real data sets. They are all taken from 
DCI Machine Learning Repository at http://www.cs.uci.edu/,,,-,mlearn/ 
MLRepository.html. For a description of the data sets see [6]. For the Iris, Sonar, 
Liver and Vote data we perform leave-one-out cross-validation to measure perfor­
mance, since the number of available data is limited for these data sets. For the 



36'--'--'---r--'--~--'--'--~--.--'--~ 
34 
32 
30 
28 
26 
24 
22 
20 
18 
16 
14 
12 
10 
8 
6 

~ ~~=='P'-

LFM-SVM --+-­
RBF-SVM ---)(---

O L-~--~--~~--~--~~--~--~~--~ 

o 10 12 14 16 18 20 22 

Number of Noisy Variables 

Figure 2: Average Error Rates of LFM-SVM and RBF-SVM as a function of an 
increasing number of noisy predictors. 
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Figure 3: Performance distributions for real data. 

Breast, OQ-Ietter and Pima data we randomly generated five independent training 
sets of size 200. For each of these, an additional independent test sample consisting 
of 200 observations was generated. Table 1 (columns 3-9) shows the cross-validated 
error rates for the eight methods under consideration on the seven real data. The 
standard deviation values are as follows. Breast data: 0.2, 0.2, 0.2, 0.2, 0.2, 0.9, 0.9 
and 0.9, respectively. OQ data: 0.2 , 0.2 , 0.2, 0.3, 0.2 , 1.1 , 1.5 and 2.1 , respectively. 
Pima data: 0.4, 0.4, 0.4, 0.4, 0.4, 2.4, 2.1 and 0.7, respectively. 

Results. Table 1 shows that LFM-SVM achieves the best performance in 2/7 of the 
real data sets; in one case it shows the second best performance, and in the remaining 
four its error rate is still quite close to the best one. Following Friedman [9], we 
capture robustness by computing the ratio bm of the error rate em of method m and 
the smallest error rate over all methods being compared in a particular example: 
bm = emf minl~k~8 ek· 

Figure 3 plots the distribution of bm for each method over the seven real data sets. 
The dark area represents the lower and upper quartiles of the distribution that are 
separated by the median. The outer vertical lines show the entire range of values for 
the distribution. The spread of the error distribution for LFM-SVM is narrow and 
close to one. The results clearly demonstrate that LFM-SVM (and ADAMENN) 
obtained the most robust performance over the data sets. 

The poor performance of the machete and C4.5 methods might be due to the greedy 
strategy they employ. Such recursive peeling strategy removes at each step a subset 
of data points permanently from further consideration. As a result, changes in an 
early split, due to any variability in parameter estimates, can have a significant 
impact on later splits , thereby producing different terminal regions. This makes 



predictions highly sensitive to the sampling fluctuations associated with the random 
nature of the process that produces the traning data, thus leading to high variance 
predictions. The scythe algorithm, by relaxing the winner-take-all splitting strategy 
of the machete algorithm, mitigates the greedy nature of the approach, and thereby 
achieves better performance. 

In [10], the authors show that the metric employed by the DANN algorithm approx­
imates the weighted Chi-squared distance, given that class densities are Gaussian 
and have the same covariance matrix. As a consequence, we may expect a degra­
dation in performance when the data do not follow Gaussian distributions and are 
corrupted by noise , which is likely the case in real scenarios like the ones tested 
here. 

We observe that the sparse solution given by SVMs provides LFM-SVM with prin­
cipled guidelines to efficiently set the input parameters. This is an important ad­
vantage over ADAMENN, which has six tunable input parameters. Furthermore, 
LFM-SVM speeds up the classification process since it applies the nearest neighbor 
rule only once, whereas ADAMENN applies it at each point within a region centered 
at the query. We also observe that the construction of the SVM for LFM-SVM is 
carried out off-line only once, and there exist algorithmic and computational results 
which make SVM training practical also for large-scale problems [12]. 

The LFM-SVM offers performance improvements over the RBF-SVM algorithm 
alone, for both the (noisy) simulated and real data sets. The reason for such perfor­
mance gain may rely on the effect of our local weighting scheme on the separability 
of classes, and therefore on the margin, as shown in [6]. Assigning large weights to 
input features close to the gradient direction, locally in neighborhoods of support 
vectors, corresponds to increase the spatial resolution along those orientations, and 
therefore to improve the separability of classes. As a consequence, better classifica­
tion results can be achieved as demonstrated in our experiments. 

5 Related Work 

In [1], Amari and Wu improve support vector machine classifiers by modifying 
kernel functions. A primary kernel is first used to obtain support vectors. The 
kernel is then modified in a data dependent way by using the support vectors: the 
factor that drives the transformation has larger values at positions close to support 
vectors. The modified kernel enlarges the spatial resolution around the boundary 
so that the separability of classes is increased. 

The resulting transformation depends on the distance of data points from the sup­
port vectors , and it is therefore a local transformation, but is independent of the 
boundary's orientation in input space. Likewise, our transformation metric de­
pends , through the factor A, on the distance of the query point from the support 
vectors. Moreover, since we weight features, our metric is directional, and depends 
on the orientation of local boundaries in input space. This dependence is driven 
by our measure of feature relevance, which has the effect of increasing the spatial 
resolution along discriminant directions around the boundary. 

6 Conclusions 

We have described a locally adaptive metric classification method and demonstrated 
its efficacy through experimental results. The proposed technique offers perfor­
mance improvements over the SVM alone, and has the potential of scaling up to 



large data sets. It speeds up, in fact, the classification process by computing off­
line the information relevant to define local weights, and by applying the nearest 
neighbor rule only once. 
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