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Abstract 

The Cluster Variation method is a class of approximation meth­
ods containing the Bethe and Kikuchi approximations as special 
cases. We derive two novel iteration schemes for the Cluster Vari­
ation Method. One is a fixed point iteration scheme which gives a 
significant improvement over loopy BP, mean field and TAP meth­
ods on directed graphical models. The other is a gradient based 
method, that is guaranteed to converge and is shown to give useful 
results on random graphs with mild frustration. We conclude that 
the methods are of significant practical value for large inference 
problems. 

1 Introduction 

Belief Propagation (BP) is a message passing scheme, which is known to yield exact 
inference in tree structured graphical models [1]. It has been noted by several 
authors that Belief Propagation can can also give impressive results for graphs that 
are not trees [2]. 

The Cluster Variation Method (CVM), is a method that has been developed in the 
physics community for approximate inference in the Ising model [3]. The CVM ap­
proximates the joint probability distribution by a number of (overlapping) marginal 
distributions (clusters). The quality of the approximation is determined by the size 
and number of clusters. When the clusters consist of only two variables, the method 
is known as the Bethe approximation. Recently, the method has been introduced 
by Yedidia et a1.[4] into the machine learning community, showing that in the Bethe 
approximation, the CVM solution coincides with the fixed points of the belief prop­
agation algorithm. For clusters consisting of more than two variables, [4] present a 
message passing scheme called generalized belief propagation (GBP). This approx­
imation to the free energy is often referred to as the Kikuchi approximation. They 
show, that GBP gives a significant improvement over the Bethe approximation for 
a small two dimensional Ising lattice with random couplings. However, for larger 
latices, both GBP and BP fail to converge [4, 5]. 

In [5] the CCCP method is proposed, which is a double loop iteration algorithm that 
is guaranteed to converge for the general CVM problem. Intuitively, the method 



consists of iteration a sequence of convex subproblem (outer loop) each of which is 
solved using a fixed point iteration method (inner loop). In this sense, the method 
is similar to the UPS algorithm of [6] which identifies trees as subproblems. 

In this paper, we propose two algorithms, one is a fixed point iteration proce­
dure, the other a gradient based method. We show that the fixed point iteration 
method gives very fast convergence and accurate results for some classical directed 
graphical models. However, for more challenging cases the fixed point method does 
not converge and the gradient based approach, which is guaranteed to converge, is 
preferable. 

2 The Cluster Variation Method 

In this section, we briefly present the cluster variation method. For a more complete 
treatment see for instance [7]. Let x = (Xl, ... ,xn ) be a set of variables, where each 
Xi can take a finite number of values. Consider a probability distribution on X of 
the form 

( ) __ 1_ -H(x) 
PH X - Z(H)e Z = 2:= e-H(x) 

x 

It is well known, that PH can be obtained as the minimum of the free energy, which 
is a functional over probability distributions of the following form: 

FH(P) = (H) + (logp) , (1) 

where the expectation value is taken with respect to the distribution p , i.e. (H) = 
L x P(x)H(x). When one minimizes FH(P) with respect to P under the constraint 
of normalization L x P(X) = 1, one obtains PH. 

Computing marginals of PH such as PH(Xi) or PH(Xi, Xj) involves sums over all 
states, which is intractable for large n. Therefore, one needs tractable approxi­
mations to PH. The cluster variation method replaces the probability distribution 
PH(X) by a large number of (possibly overlapping) probability distributions , each 
describing a sub set (cluster) of variables. Due to the one-to-one correspondence 
between a probability distribution and the minima of a free energy we can define ap­
proximate probability distributions by constructing approximate free energies and 
computing their minimum. This is achieved by approximating Eq. 1 in terms of the 
cluster probabilities. The solution is obtained by minimizing this approximate free 
energy subject to normalization and consistency constraints. 

Define clusters as subsets of distinct variables: Xa = (XiI' ... ,Xik), with 1 ~ i j ~ n. 
Consider the set of clusters P that describe the interactions in H and write H as a 
sum of these interactions: 

H(x) = 2:= Hl(xoJ 
a EP 

We now define a set of clusters B, that will determine our approximation in the 
cluster variation method. For each cluster a E B, we introduce a probability 
distribution Pa(xa) which jointly must approximate p(x). B should at least contain 
the interactions in p(x) in the following way: Va E P => 30:' E B,a c a'. In 
addition, we demand that no two clusters in B contain each other: a, a' E B => 
a rt a', a' rt a. The minimal choice for B is to chose clusters from P itself. The 
maximal choice for B is the cliques obtained when constructing the junction tree[8]. 
In this case, the clusters in B form a tree structure and the CVM method is exact. 

Define a set of clusters M that consist of any intersection of a number of clusters 
of B: M = {,BI,B = nkak, ak E B}, and define U = BuM. Once U is given, we 



define numbers a/3 recursively by the Moebius formula 

1 = L ao;, V (3 E U 
o;EU,o;"J/3 

In particular, this shows that ao; = 1 for 0: E B. 

The Moebius formula allows us to rewrite (H) in terms of the cluster probabilities 

(H) = Lao; LPo;(xo;)Ho;(xo;), (2) 
o;EU x" 

with Ho;(xo;) = L./3EP,/3co; Hh(X/3) . Since interactions Hh may appear in more than 
one Ho;, the constants ao; ensure that double counting is compensated for. 

Whereas (H) can be written exactly in terms of Po;, this is not the case for the 
entropy term in Eq. 1. The approach is to decompose the entropy of a cluster 0: in 
terms of 'connected entropies' in the following way: 1 

(3) 
x" /3Co; 

where the sum over (3 contains all sub clusters of 0:. Such a decomposition can be 
made for any cluster. In particular it can be made for the 'cluster' consisting of all 
variables, so that we obtain 

S = - LP(x) logp(x) = L Sh· (4) 
x /3 

The cluster variation method approximates the total entropy by restricting this 
latter sum to only clusters in U and re-expressing Sh in terms of So;, using the 
Moebius formula and the definition Eq. 3. 

(5) 
/3EU /3EU 0;"J/3 o;EU 

Since So; is a function of Po; (Eq. 3) , we have expressed the entropy in terms of 
cluster probabilities Po; . 

The quality of this approximation is illustrated in Fig. 1 for the SK model. Note, 
that both the Bethe and Kikuchi approximation strongly deteriorate around J = 1, 
which is where the spin-glass phase starts. For J < 1, the Kikuchi approximation is 
superior to the Bethe approximation. Note, however, that this figure only illustrates 
the quality of the truncations in Eq. 5 assuming that the exact marginals are known. 
It does not say anything about the accuracy of the approximate marginals using 
the approximate free energy. 

Substituting Eqs. 2 and 5 into the free energy Eq. 1 we obtain the approximate 
free energy of the Cluster Variation method. This free energy must be minimized 
subject to normalization constraints L.x" Po; (x o; ) = 1 and consistency constraints 

Po;(X/3) = P/3(X/3), 0:,(3 E U,(3 C 0:. (6) 

with Po; (X/3) = L.x Po; (xo;). 
"\f3 

IThis decomposition is similar to writing a correlation in terms of means and covariance. 
For instance when a = (i) , S(i) = SIi) is the usual mean field entropy and S(ij) = Sli) + 
SIj) + Slij) defines the two node correction Slij)" 
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Figure 1: Exact and approximate entropies for the fully connected Boltzmann-Gibbs 
distribution on n = 10 variables with random couplings (SK model) as a function of mean 
coupling strength. Couplings Wij are chosen from a normal Gaussian distribution with 
mean zero and standard deviation J /..;n. External fields ()i are chosen from a normal 
Gaussian distribution with mean zero and standard deviation 0.1. The exact entropy is 
computed from Eq. 4. The Bethe and Kikuchi approximations are computed using the 
approximate entropy expression Eq. 5 with exact marginals and by choosing B as the set 
of all pairs and all triplets, respectively. 

The set of consistency constraints can be significantly reduced because some con­
straints imply others. Let 0:,0:', .. . denote clusters in Band fJ, fJ', ... denote clusters 
in M. 

• If fJ c fJ' Co: and Pa(x/3') = P/3' (x/3') and Pa(x/3 ) = P/3(x/3), then P/3' (x/3) = 
P/3 (X/3)' This means that constraints between clusters in M can be removed . 

• If fJ c fJ' c 0: , 0:' and Pa(x/3') = Pa' (x /3') and p,,,(x/3) = P/3 (x /3 ), then 
Pa,(x/3) = P/3 (x/3)' This means that some constraints between clusters in B 
and M can be removed. 

We denote the remaining necessary constraints by 0: ---t fJ. 
Adding Lagrange multipliers for the constraints we obtain the Cluster Variation 
free energy: 

aEU x " 

- L Aa (LPa(Xa) - 1) - L L L Aa/3 (X/3) (Pa(x /3 ) - P/3 (x/3)) 
aEU x " /3 EM a-+ /3 X f3 

(7) 



3 Iterating Lagrange multipliers 

By setting 88Fc(vm), a E U equal to zero, one can express the cluster probabilities in 
PO! X o: 

terms of the Lagrange multipliers: 

; exp (-Ha(Xa) + L )..a(3 (X(3)) 
a (3f-a 

(8) 

; exp (-H(3 (X(3 ) - a1 L )..a(3 (X (3 )) 
(3 (3 a-t (3 

(9) 

The remaining task is to solve for the Lagrange multipliers such that all constraints 
(Eq. 6) are satisfied. We present two ways to do this. 

When one substitutes Eqs. 8-9 into the constraint Eqs. 6 one obtains a system of 
coupled non-linear equations. In Yedidia et al.[4] a message passing algorithm was 
proposed to find a solution to this problem. Here, we will present an alternative 
method, that solves directly in terms of the Lagrange multipliers. 

3.1 Fixed point iteration 

Consider the constraints Eq. 6 for some fixed cluster fJ and all clusters a -+ fJ and 
define B(3 = {a E Bla -+ fJ }· We wish to solve for all constraints a -+ fJ, with 
a E B(3 by adjusting )..a(3, a E B(3. This is a sub-problem with IB(3 I IX(3 I equations 
and an equal number of unknowns, where IB(3 1 is the number of elements of B(3 
and IX(3 1 is the number of values that x(3 can take. The probability distribution P(3 
(Eq. 9) depends only on these Lagrange multipliers. Pa (Eq. 8) depends also on other 
Lagrange multipliers. However, we consider only its dependence on )..a(3 , a E B(3 , 
and consider all other Lagrange multipliers as fixed . Thus, 

(10) 

with Pa independent of ).. a(3, a E B(3 . 

Substituting, Eqs. 9 and 10 into Eq. 6, we obtain a set of linear equations for 
)..a(3 (x(3 ) which we can solve in closed form: 

)..a(3 (X(3 ) = - alB IH(3 (X(3 ) - L AaadogPa l (X(3 ) 
a(3 + (3 a' 

with 
1 

Aaal = /jaa l - --c=--:-
a(3 + IB(3 1 

We update the probabilities with the new values of the Lagrange multipliers using 
Eqs. 9 and 10. We repeat the above procedure for all fJ E M until convergence. 

3.2 Gradient descent 

We define an auxiliary cost function 

C = L LP(3 (X(3 ) log P(3 ((X(3 )) = L Ca(3 
a(3 Xf3 Pa x(3 a(3 

(11) 

that is zero when all constraints are satisfied and positive otherwise and minimize 
this cost function with respect to the Lagrange multipliers )..a(3 (X(3 ). The gradient 



of C is given by: 

8C Pf3(Xf3 ) ""' (Pf3(Xf3 ) ) ""' (PI () ()) --- ~ log ( ) - Cal f3 - ~ af3' xf3 - Pa xf3 
af3 a/-tf3 Pa' Xf3 13' +--a 

with 

4 Numerical results 

4.1 Directed Graphical models 

We show the performance of the fixed point iteration procedure on several 'real 
world' directed graphical models. In figure 2a, we plot the exact single node 
marginals against the approximate marginals for the Asia problem [8]. Clusters 
in B are defined according to the conditional probability tables. Convergence was 
reached in 6 iterations using fixed point iteration. Maximal error on the marginals 
is 0.0033. For comparison, we computed the mean field and TAP approximations, 
as previously introduced by [9]. Although TAP is significantly better than MF, it 
is far worse than the CVM method. This is not surprising, since both the MF and 
TAP approximation are based on single node approximation, whereas the CVM 
method uses potentials up to size 3. 

In figure 2b, we plot the exact single node marginals against the approximate CVM 
marginals for the alarm network [10]. The structure and CPTs were downloaded 
from www.cs.huji.ac.il;-nir. Clusters in B are defined according to the con­
ditional probability tables and maximally contain 5 variables. Convergence was 
reached in 15 iterations using fixed point iteration. Maximal error on the marginals 
is 0.029. Ordinary loopy BP gives an error in the marginals of approximately 0.25 
[2]. Mean field and TAP methods did not give reproducible results on this problem. 
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Figure 2: Comparison of single node marginals on two real world problems. 

Finally, we tested the cluster variation method on randomly generated directed 



graphical models . Each node is randomly connected to k parents. The entries of 
the probability tables are randomly generated between zero and one. Due to the 
large number of loops in the graph, the exact method requires exponential time in 
the maximum clique size, which can be seen from Table 1 to scale approximately 
linear with the network size. Therefore exact computation is only feasible for small 
graphs (up to size n = 40 in this case). 

For the CVM, clusters in B are defined according to the conditional probability 
tables. Therefore, maximal cluster size is k + 1. On these more challenging cases, 
the fixed point iteration method does not converge. The results shown are obtained 
with conjugate gradient descent on the auxiliary cost function Eq. 11. The results 
are shown in Table 1. 

n Iter IGI Potential error Margin error G 
10 16 8 0.018 0.004 9.7e-ll 
20 189 12 0.019 0.029 2.4e-4 
30 157 16 0.033 0.130 2.1e-3 
40 148 21 0.048 0.144 3.6e-3 
50 132 26 - - 4.5e-3 

Table 1: Comparison of CYM method for large directed graphical models. Each node 
is connected to k = 5 parents. IGI is the tree width of the triangulated graph required 
for the exact computation. Iter is the number of conjugate gradient descent iterations of 
the CYM method. Potential error and margin error are the maximum absolute distance 
(MAD) in any of the cluster probabilities and single variable marginals computed with 
CYM, respectively. G is given by Eq. 11 after termination of CYM. 

4.2 Markov networks 

We compare the Bethe and Kikuchi approximations for the SK model with n = 5 
neurons as defined in Fig. 1. We expect that for small J the CVM approximation 
gives accurate results and deteriorates for larger J. 

We compare the Bethe approximation, where we define clusters for all pairs of nodes 
and a Kikuchi approximation where we define clusters for all sub sets of three nodes. 
The results are given in Table 2. We see that for the Bethe approximation, the 
results of the fixed point iteration method (FPI) and the gradient based approach 
agree. For the Kikuchi approximation the fixed point iteration method does not 
converge and results are omitted. As expected, the Kikuchi approximation gives 
more accurate results than the Bethe approximation for small J. 

5 Conclusion 

We have presented two iteration schemes for finding the minimum of the constraint 
problem Eq. 7. One method is a fixed point iteration method that is equivalent 
to belief propagation for pairwise interactions. This method is very fast and gives 
very accurate results for 'not too complex' graphical models , such as real world 
directed graphical models and frustrated Boltzmann distributions in the Bethe ap­
proximation. However, for more complex graphs such as random directed graphs or 
more complex approximations, such as the Kikuchi approximation, the fixed point 
iteration method does not converge. Empirically, it is found that smoothing may 
somewhat help , but certainly does not solve this problem. For these more com­
plex problems we propose to minimize an auxiliary cost function using a gradient 



Bethe Kikuchi 
FPI gradient gradient 

J Iter Error Iter Error Iter Error 
0.25 7 0.000161 7 0.000548 120 0.000012 
0.50 9 0.001297 11 0.001263 221 0.000355 
0.75 13 0.004325 14 0.004392 86 0.021176 
1.00 17 0.009765 15 0.009827 49 0.036882 
1.50 38 0.027217 16 0.027323 150 0.059977 
2.00 75 0.049955 20 0.049831 137 0.088481 

Table 2: Comparison of Bethe and Kikuchi approximation for Boltzmann distributions. 
Iter is the number of iterations needed. Error is the MAD of single variable marginals. 

based method. Clearly, this approach is guaranteed to converge. Empirically, we 
have found no problems with local minima. However , we have found that obtaining 
solut ion with C close to zero may require many iterations. 

Acknowledgments 

This research was supported in part by the Dutch Technology Foundation (STW). 
I would like to thank Taylan Cemgil for providing his Matlab graphical models 
toolkit and Sebino Stramaglia (Bari, Italy) for useful discussions. 

References 

[1] J. Pearl. Probabilistic reasoning in intelligent systems: Networks of Plausible Infer­
ence. Morgan Kaufmann, San Francisco, California, 1988. 

[2] Kevin P. Murphy, Yair Weiss, and Michael I. Jordan. Loopy belief propagation for 
approximate inference: An empirical study. In Proceedings of Uncertainty in AI, 
pages 467- 475, 1999. 

[3] R. Kikuchi. Physical Review, 81:988, 1951. 

[4] J.S. Yedidia, W.T. Freeman, and Y. Weiss. Generalized belief propagation. In T.K. 
Leen, T.G. Dietterich, and V. Tresp, editors, Advances in Neural Information Pro­
cessing Systems 13 (Proceedings of the 2000 Conference), 2001. In press. 

[5] A.L. Yuille and A. Rangarajan. The convex-concave principle. In T.G. Dieterich, 
S. Becker, and Z. Ghahramani, editors, Advances in Neural Information Processing 
Systems, volume 14, 2002. In press. 

[6] Y. Teh and M. Welling. The unified propagation and scaling algorithm. In T.G. 
Dieterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural Information 
Processing Systems, volume 14, 2002. In press. 

[7] H.J. Kappen. The cluster variation method for approximate reasoning in medical 
diagnosis. In G. Nardulli and S. Stramaglia, editors, Modeling Bio-medical signals. 
World-Scientific, 2002. In press. 

[8] S.L. Lauritzen and D.J. Spiegelhalter. Local computations with probabilties on graph­
ical structures and their application to expert systems. J. Royal Statistical society B, 
50:154- 227, 1988. 

[9] H.J . Kappen and W .A.J.J. Wiegerinck. Second order approximations for probability 
models. In Todd Leen, Tom Dietterich, Rich Caruana, and Virginia de Sa, editors, 
Advances in Neural Information Processing Systems 13, pages 238- 244. MIT Press, 
2001. 

[10] 1. Beinlich, G. Suermondt, R. Chaves, and G. Cooper. The alarm monitoring system: 
A case study with two probabilistic inference techniques for belief networks. In 2'nd 
European Conference on AI in Medicin e, 1989. 


