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Abstract

We present an extension to the Mixture of Experts (ME) model, where
the individual experts are Gaussian Process (GP) regression models. Us-
ing an input-dependent adaptation of the Dirichlet Process, we imple-
ment a gating network for an infinite number of Experts. Inference in this
model may be done efficiently using a Markov Chain relying on Gibbs
sampling. The model allows the effective covariance function to vary
with the inputs, and may handle large datasets – thus potentially over-
coming two of the biggest hurdles with GP models. Simulations show
the viability of this approach.

1 Introduction

Gaussian Processes [Williams & Rasmussen, 1996] have proven to be a powerful tool for
regression. They combine the flexibility of being able to model arbitrary smooth functions
if given enough data, with the simplicity of a Bayesian specification that only requires in-
ference over a small number of readily interpretable hyperparameters – such as the length
scales by which the function varies along different dimensions, the contributions of signal
and noise to the variance in the data, etc. However, GPs suffer from two important limita-
tions. First, because inference requires inversion of an ����� covariance matrix where � is
the number of training data points, they are computationally impractical for large datasets.
Second, the covariance function is commonly assumed to be stationary, limiting the mod-
eling flexibility. For example, if the noise variance is different in different parts of the input
space, or if the function has a discontinuity, a stationary covariance function will not be
adequate. Goldberg et al [1998] discussed the case of input dependent noise variance.

Several recent attempts have been aimed at approximate inference in GP models [Williams
& Seeger 2001, Smola & Bartlett 2001]. These methods are based on selecting a projection
of the covariance matrix onto a smaller subspace (e.g. a subset of the data points) reducing
the overall computational complexity. There have also been attempts at deriving more
complex covariance functions [Gibbs 1997] although it can be difficult to decide a priori
on a covariance function of sufficient complexity which guarantees positive definiteness.

In this paper we will simultaneously address both the problem of computational complexity
and the deficiencies in covariance functions using a divide and conquer strategy inspired
by the Mixture of Experts (ME) architecture [Jacobs et al, 1991]. In this model the input



space is (probabilistically) divided by a gating network into regions within which specific
separate experts make predictions. Using GP models as experts we gain the double advan-
tage that computation for each expert is cubic only in the number of data point in its region,
rather than in the entire dataset, and that each GP-expert may learn different characteristics
of the function (such as lengths scales, noise variances, etc). Of course, as in the ME, the
learning of the experts and the gating network are intimately coupled.

Unfortunately, it may be (practically and statistically) difficult to infer the appropriate num-
ber of experts for a particular dataset. In the current paper we sidestep this difficult problem
by using an infinite number of experts and employing a gating network related to the Dirich-
let Process, to specify a spatially varying Dirichlet Process. An infinite number of experts
may also in many cases be more faithful to our prior expectations about complex real-word
datasets. Integrating over the posterior distribution for the parameters is carried out using
a Markov Chain Monte Carlo approach.

Tresp [2001] presented an alternative approach to mixtures of GPs. In his approach both the�
experts and the gating network were implemented with GPs; the gating network being

a softmax of
�

GPs. Our new model avoids several limitations of the previous approach,
which are covered in depth in the discussion.

2 Infinite GP mixtures

The traditional ME likelihood does not apply when the experts are non-parametric. This is
because in a normal ME model the data is assumed to be iid given the model parameters:������� �
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where � and � are inputs and outputs (boldface denotes vectors), � � are the parameters
of expert � , ! are the parameters of the gating network and � � are the discrete indicator
variables assigning data points to experts.

This iid assumption is contrary to GP models which solely model the dependencies in the
joint distribution (given the hyperparameters). There is a joint distribution corresponding
to every possible assignment of data points to experts; therefore the likelihood is a sum
over (exponentially many) assignments:������� �
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Given the configuration (>�?�,��@�	4=A=A=4	$�<BC
 , the distribution factors into the product, over ex-
perts, of the joint Gaussian distribution of all data points assigned to each expert. Whereas
the original ME formulation used expectations of assignment variables called responsibili-
ties, this is inadequate for inference in the mixture of GP experts. Consequently, we directly
represent the indicators, � � , and Gibbs sample for them to capture their dependencies.

In Gibbs sampling we need the posterior conditional distribution for each indicator given
all the remaining indicators and the data:���,� � ���D� (FE � 	$�
	��G	$�C	"! 
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where (CE � denotes all indicators except number K . We defer discussion of the second term
defining the gating network to the next section. As discussed, the first term being the
likelihood given the indicators factors into independent terms for each expert. For Gibbs
sampling we therefore need the probability of output � � under GP number � :����� � �924��L 5�MON� K 	$�PL����C7*	<2Q�CL 5 �PL����)7�	�� � 
#=



For a GP model, this conditional density is the well known Gaussian [Williams & Ras-
mussen, 1996]:
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where the covariance matrix 
 depends on the parameters � . Thus, for the GP expert, we
compute the above conditional density by simply evaluating the GP on the data assigned
to it. Although this equation looks computationally expensive, we can keep track of the
inverse covariance matrices and reuse them for consecutive Gibbs updates by performing
rank one updates (since Gibbs sampling changes at most one indicator at a time).

We are free to choose any valid covariance function for the experts. In our simulations we
employed the following Gaussian covariance function:
 ��� � 	�� ��� 
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with hyperparameters �1� controlling the signal variance, � @ controlling the noise variance,
and ) $ controlling the length scale or (inverse) relevance of the 2 -th dimension of � in
relation to predicting � ; . is the Kronecker delta function (i.e. . � K 	 K / 
�� ! if K � K / , o.w. 0).

3 The Gating network

The gating network assigns probability to different experts based entirely on the input. We
will derive a gating network based on the Dirichlet Process which can be defined as the
limit of a Dirichlet distribution when the number of classes tends to infinity. The stan-
dard Dirichlet Process is not input dependent, but we will modify it to serve as a gating
mechanism. We start from a symmetric Dirichlet distribution on proportions:
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where 7 is the (positive) concentration parameter. It can be shown [Rasmussen, 2000] that
the conditional probability of a single indicator when integrating over the 3 � variables and
letting D tend to infinity is given by:
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all other compo-
nents combined:
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where �GE �4K � ( �QP �&�0RS � . �,� ��� 	 �8
 ) is the occupation number of expert � excluding observationK , and � is the total number of data points. This shows that the probabilities are proportional
to the occupation numbers. To make the gating network input dependent, we will simply
employ a local estimate 1 for this occupation number using a kernel classifier:

� E �4K � � � �T� ! 
 P � � RS �JUWV ��� � 	�� ��� 
 . �,� ��� 	 �8
P � � RS �FUWV ��� � 	�� �&� 
 	 (5)

where the delta function selects data points assigned to class � , and
U

is the kernel function
parametrized by ! . As an example we use a Gaussian kernel function:UOV ��� � 	�� ��� 
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1this local estimate won’t generally be an integer, but this doesn’t have any adverse consequences



parameterized by length scales ! $ for each dimension. These length scales allow dimen-
sions of � space to be more or less relevant to the gating network classification.

We Gibbs sample from the indicator variables by multiplying the input-dependent Dirichlet
process prior eq. (4) and (5) with the GP conditional density eq. (2). Gibbs sampling in an
infinite model requires that the indicator variables can take on values that no other indicator
variable has already taken, thereby creating new experts. We use the auxiliary variable
approach of Neal [1998] (algorithm 8 in that paper). In this approach hyperparameters for
new experts are sampled from their prior and the likelihood is evaluated based on these.
This requires finding the likelihood of a Gaussian process with no data. Fortunately, for the
covariance function eq. (3) this likelihood is Gaussian with zero mean and variance � � , ��@ .
If all � data points are assigned to a single GP, the likelihood calculation will still be cubic
in the number of data points (per Gibbs sweep over all indicators). We can reduce the com-
putational complexity by introducing the constraint that no GP expert can have more than
�

max data points assigned to it. This is easily implemented2 by modifying the conditionals
in the Gibbs sampler.

The hyperparameter 7 controls the prior probability of assigning a data point to a new
expert, and therefore influences the total number of experts used to model the data. As in
Rasmussen [2000], we give a vague inverse gamma prior to 7 , and sample from its posterior
using Adaptive Rejection Sampling (ARS) [Gilks & Wild, 1992]. Allowing 7 to vary gives
the model more freedom to infer the number of GPs to use for a particular dataset.

Finally we need to do inference for the parameters of the gating function. Given a set of
indicator variables one could use standard methods from kernel classification to optimize
the kernel widths in different directions. These methods typically optimize the leave-one-
out pseudo-likelihood (ie the product of the conditionals), since computing the likelihood
in a model defined purely from conditional distributions as in eq. (4), (5) & (6) is generally
difficult (and as pointed out in the discussion section there may not even be a single likeli-
hood). In our model we multiply the pseudo-likelihood by a (vague) prior and sample from
the resulting pseudo-posterior.

4 The Algorithm

The individual GP experts are given a stationary Gaussian covariance function, with a sin-
gle length scale per dimension, a signal variance and a noise variance, i.e. �

, #
(where

� is the dimension of the input) hyperparameters per expert, eq. (3). The signal and noise
variances are given inverse gamma priors with hyper-hypers � and � (separately for the
two variances). This serves to couple the hyperparameters between experts, and allows the
priors on � � and �*@ (which are used when evaluating auxiliary classes) to adapt. Finally we
give vague independent log normal priors to the lenght scale paramters ) and ! .

The algorithm for learning an infinite mixture of GP experts consists of the following steps:

1. Initialize indicator variables � � to a single value (or a few values if individual GPs
are to be kept small for computational reasons).

2. Do a Gibbs sampling sweep over all indicators.

3. Do Hybrid Monte Carlo (HMC) [Duane et al, 1987] for hyperparameters of the
GP covariance function, � � 	
��@ 	 ) $ , for each expert in turn. We used 10 leapfrog
iterations with a stepsize small enough that rejections were rare.

4. Optimize the hyper-hypers, � & � , for each of the variance parameters.

5. Sample the Dirichlet process concentration parameter, 7 using ARS.
2We simply set the conditional probability of joining a class which has been deemed full to zero.
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Figure 1: The left hand plot shows the motorcycle impact data (133 points) together with
the median of the model’s predictive distribution, and for comparison the mean of a sta-
tionary covariance GP model (with optimized hyperparameters). On the right hand plot
we show ! NJN samples from the posterior distribution for the iMGPE of the (noise free)
function evaluated intervals of 1 ms. We have jittered the points in the plot along the time
dimension by adding uniform �

N = # ms noise, so that the density can be seen more easily.
Also, the � # std error ( ����� ) confidence interval for the (noise free) function predicted by
a stationary GP is plotted (thin lines).

6. Sample the gating kernel widths, ! ; we use the Metropolis method to sample from
the pseudo-posterior with a Gaussian proposal fit at the current ! 3

7. Repeat from 2 until the Markov chain has adequately sampled the posterior.

5 Simulations on a simple real-world data set

To illustrate our algorithm, we used the motorcycle dataset, fig. 1, discussed in Silverman
[1985]. This dataset is obviously non-stationary and has input-dependent noise. We noticed
that the raw data is discretized into bins of size ��� ! = # g; accordingly we cut off the prior
for the noise variance at � � ' ! # .
The model is able to capture the general shape of the function and also the input-dependent
nature of the noise (fig. 1). This can be seen from the right hand plot in fig. 1, where the
uncertainty of the function is very low for 	�
 ! N ��
 owing to a small inferred noise level
in this region. For comparison, the predictions from a stationary GP has been superimposed
in fig. 1. Whereas the medians of the predictive distributions agree to a large extent (left
hand plot), we see a huge difference in the predictive distributions (right hand). The ho-
moscedastic GP cannot capture the very tight distribution for 	�
 ! N ms offered by iMGPE.
Also for large 	

L��JN
ms, the iMGPE model predicts with fairly high probability that the

signal could be very close to zero. Note that the predictive distribution of the function is
multimodal, for example, around time 35 ms. Multimodal predictive distributions could
in principle be obtained from an ordinary GP by integrating over hyperparameters, how-
ever, in a mixture of GP’s model they can arise naturally. The predictive distribution of the
function appears to have significant mass around

N
g which seems somewhat artifactual.

We explicitly did not normalize or center the data, which has a large range in output. The

3The Gaussian fit uses the derivative and Hessian of the log posterior wrt the log length scales.
Since this is an asymmetric proposal the acceptance probabilities must be modified accordingly. This
scheme has the advantage of containing no tunable parameters; however when the dimension � is
large, it may be computationally more efficient to use HMC, to avoid calculation of the Hessian.
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Figure 2: The left hand plot shows the number of times, out of 100 samples, that the
indicator variables for two data points were equal. The data have been sorted from left-to-
right according to the value of the time variable (since the data is not equally spaced in time
the axis of this matrix cannot be aligned with the plot in fig.1). The right hand plot shows
a histogram over the 100 samples of the number of GP experts used to model the data.

Gaussian processes had zero mean a priori, which coupled with the concentration of data
around zero may explain the posterior mass at zero. It would be more natural to treat the
GP means as separate hyperparameters controlled by a hyper-hyperparameter (centered at
zero) and do inference on them, rather than fix them all at 0. Although the scatter of data
from the predictive distribution for iMGPE looks somewhat messy with multimodality etc,
it is important to note that it assigns high density to regions that seem probable.

The motorcycle data appears to have roughly three regions: a flat low-noise region, fol-
lowed by a curved region, and a flat high noise region. This intuition is bourne out by the
model. We can see this in two ways. Fig 2. (left) shows the number of times two data
points were assigned to the same expert. A clearly defined block captures the initial flat
region and a few other points that lie near the

N
g line; the middle block captures the curved

region, with a more gradual transition to the last flat region. A histogram of the number of
GP experts used shows that the posterior distribution of number of needed GPs has a broad
peak between � and ! N , where less than 3 occupied experts is very unlikely, and above ! N
becoming progressively less likely. Note that it never uses just a single GP to model the
data which accords with the intuition that a single stationary covariance function would be
inadequate. We should point out that the model is not trying to do model selection between
finite GP mixtures, but rather always assumes that there are infinitely many available, most
of which contribute with small mass4 to a diffuse density in the background.

In figure 3 we assessed the convergence rate of the Markov Chain by plotting the auto-
correlation function for several parameters. We conclude that the mixing time is around
100 iterations5. Consequently, we run the chain for a total of !J! NJN%N iterations, discarding
the initial ! NJN%N (burn-in) and keeping every ! N%N ’th after that. The total computation time
was around 1 hour (1 GHz Pentium).

The right hand panel of figure 3 shows the distribution of the gating function kernel width

4The total mass of the non-represented experts is �������	�
��� , where the posterior for � in this
experiment is peaked between � and 
 (see figure 3, bottom right panel), corresponding to about ���
of the total mass

5the sum of the auto-correlation coefficients from ��� to � is an estimate of the mixing time



0 50 100 150 200

0

0.2

0.4

0.6

0.8

1

time lag in iterations

au
to

 c
or

re
la

tio
n 

co
ef

fic
ie

nt

log number of occupied experts
log gating kernel width
log Dirichlet concentration

−1 −0.5 0 0.5
0

5

10

log (base 10) gating function kernel width

fr
eq

ue
nc

y

−0.5 0 0.5 1
0

5

10

log (base 10) Dirichlet process concentration

fr
eq

ue
nc

y

Figure 3: The left hand plot shows the auto-correlation for various parameters of the model
based on !%! NJN%N iterations. The right hand plots show the distribution of the (log) kernel
width ! and (log) Dirichlet concentration parameter 7 , based on ! N%N samples from the
posterior.

! and the concentration parameter of the Dirichlet process. The posterior 6 kernel width !
lies between

N = ! and � ; comparing to the scale of the inputs these are quite short distances,
corresponding to rapid transitions between experts (as opposed to lengthy intervals with
multiple active experts). This corresponds well with our visual impression of the data.

6 Discussion and Conclusions

We now return to Tresp [2000]. There are four ways in which the infinite mixture of GP
experts differs from, and we believe, improves upon the model presented by Tresp. First,
in his model, although a gating network divides up the input space, each GP expert predicts
on the basis of all of the data. Data that was not assigned to a GP expert can therefore spill
over into predictions of a GP, which will lead to bias near region boundaries especially
for experts with long length scales. Second, if there are

�
experts, Tresp’s model has

� � GPs (the experts, noise models, and separate gating functions) each of which requires
computations over the entire dataset resulting in � � � � ���4
 computations. In our model
since the experts divide up the data points, if there are

�
experts equally dividing the data

an iteration takes � � � � ' � 
 computations (each of � Gibbs updates requires a rank-one
computation � � � � ' � � 
 for each of the

�
experts and the Hybrid Monte Carlo takes

�
times � � � � ' � � 
 ). Even for modest

�
(e.g.

��� ! N ) this can be a significant saving.
Inference for the gating length scale parameters is � � � � � � 
 if the full Hessian is used,
but can be reduced to � � � � � 
 for a diagonal approximation, or Hybrid Monte Carlo if the
input dimension is large. Third, by going to the Dirichlet process infinite limit, we allow
the model to infer the number of components required to capture the data. Finally, in our
model the GP hyperparameters are not fixed but are instead inferred from the data.

We have defined the gating network prior implicitly in terms of the conditional distribution
of an indicator variable given all the other indicator variables. Specifically, the distribution
of this indicator variable is an input-dependent Dirichlet process with counts given by local
estimates of the data density in each class eq. (5). We have not been able to prove that
these conditional distributions are always consistent with a single joint distribution over

6for comparison the (vague) prior on the kernel width is log normal with ��� � of the mass between�
	 � and � ��� , corresponding to very short (sub sample) distances upto distances comparable to the
entire input range



the indicators. If indeed there does not exist a single consistent joint distribution the Gibbs
sampler may converge to different distributions depending on the order of sampling.

We are encouraged by the preliminary results obtained on the motorcycle data. Future work
should also include empirical comparisons with other state-of-the-art regression methods
on multidimensional benchmark datasets. We have argued here that single iterations of the
MCMC inference are computationally tractable even for large data sets, experiments will
show whether mixing is sufficiently rapid to allow practical application. We hope that the
extra flexibility of the effective covariance function will turn out to improve performance.
Also, the automatic choice of the number of experts may make the model advantageous for
practical modeling tasks.

Finally, we wish to come back to the modeling philosophy which underlies this paper. The
computational problem in doing inference and prediction using Gaussian Processes arises
out of the unrealistic assumption that a single covariance function captures the behavior of
the data over its entire range. This leads to a cumbersome matrix inversion over the entire
data set. Instead we find that by making a more realistic assumption, that the data can be
modeled by an infinite mixture of local Gaussian processes, the computational problem
also decomposes into smaller matrix inversions.
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