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Abstract 

We propose a novel method for the analysis of sequential data 
that exhibits an inherent mode switching. In particular, the data 
might be a non-stationary time series from a dynamical system 
that switches between multiple operating modes. Unlike other ap­
proaches, our method processes the data incrementally and without 
any training of internal parameters. We use an HMM with a dy­
namically changing number of states and an on-line variant of the 
Viterbi algorithm that performs an unsupervised segmentation and 
classification of the data on-the-fly, i.e. the method is able to pro­
cess incoming data in real-time. The main idea of the approach is 
to track and segment changes of the probability density of the data 
in a sliding window on the incoming data stream. The usefulness 
of the algorithm is demonstrated by an application to a switching 
dynamical system. 

1 Introduction 

Abrupt changes can occur in many different real-world systems like, for example, 
in speech, in climatological or industrial processes, in financial markets, and also 
in physiological signals (EEG/MEG). Methods for the analysis of time-varying dy­
namical systems are therefore an important issue in many application areas. In [12], 
we introduced the annealed competition of experts method for time series from non­
linear switching dynamics, related approaches were presented, e.g., in [2, 6, 9, 14]. 
For a brief review of some of these models see [5], a good introduction is given in 
[3]. 

We here present a different approach in two respects. First, the segmentation does 
not depend on the predictability of the system. Instead, we merely estimate the 
density distribution of the data and track its changes. This is particularly an im­
provement for systems where data is hard to predict , like, for example, EEG record­
ings [7] or financial data. Second, it is an on-line method. An incoming data stream 
is processed incrementally while keeping the computational effort limited by a fixed 
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upper bound, i.e. the algorithm is able to perpetually segment and classify data 
streams with a fixed amount of memory and CPU resources. It is even possible to 
continuously monitor measured data in real-time, as long as the sampling rate is 
not too high.l The main reason for achieving a high on-line processing speed is the 
fact that the method, in contrast to the approaches above, does not involve any 
training, i.e. iterative adaptation of parameters. Instead, it optimizes the segmen­
tation on-the-fly by means of dynamic programming [1], which thereby results in an 
automatic correction or fine-tuning of previously estimated segmentation bounds. 

2 The segmentation algorithm 

We consider the problem of continuously segmenting a data stream on-line and 
simultaneously labeling the segments. The data stream is supposed to have a se­
quential or temporal structure as follows: it is supposed to consist of consecutive 
blocks of data in such a way that the data points in each block originate from 
the same underlying distribution. The segmentation task is to be performed in an 
unsupervised fashion, i.e. without any a-priori given labels or segmentation bounds. 

2.1 Using pdfs as features for segmentation 

Consider Yl, Y2 , Y3, ... , with Yt E Rn, an incoming data stream to be analyzed. 
The sequence might have already passed a pre-processing step like filtering or sub­
sampling, as long as this can be done on-the-fly in case of an on-line scenario. As 
a first step of further processing, it might then be useful to exploit an idea from 
dynamical systems theory and embed the data into a higher-dimensional space, 
which aims to reconstruct the state space of the underlying system, 

Xt = (Yt,Yt-n'" ,Yt -(m-l)r )' (1) 
The parameter m is called the embedding dimension and T is called the delay 
parameter of the embedding. The dimension of the vectors Xt thus is d = m n. The 
idea behind embedding is that the measured data might be a potentially non-linear 
projection of the systems state or phase space. In any case, an embedding in a 
higher-dimensional space might help to resolve structure in the data, a property 
which is exploited, e.g., in scatter plots. After the embedding step one might 
perform a sub-sampling of the embedded data in order to reduce the amount of 
data for real-time processing.2 Next, we want to track the density distribution of 
the embedded data and therefore estimate the probability density function (pdf) in a 
sliding window of length W. We use a standard density estimator with multivariate 
Gaussian kernels [4] for this purpose, centered on the data points3 in the window 
{ ~ }W-l 
Xt-w w=o, 

() 1 ~l 1 ( (x - Xt_w)2) 
Pt x = W ~ (27fa2 )d/2 exp - 2a2 . 

(2) 

The kernel width a is a smoothing parameter and its value is important to obtain 
a good representation of the underlying distribution. We propose to choose a pro­
portional to the mean distance of each Xt to its first d nearest neighbors, averaged 
over a sample set {xt}. 

1 In our reported application we can process data at 1000 Hz (450 Hz including display) 
on a 1.33 GHz PC in MATLAB/C under Linux, which we expect is sufficient for a large 
number of applications. 

2In that case, our further notation of time indices would refer to the subsampled data. 
3We use if to denote a specific vector-valued point and x to denote a vector-valued 

variable. 



2.2 Similarity of two pdfs 

Once we have sampled enough data points to compute the first pdf according to 
eq. (2), we can compute a new pdf with each new incoming data point. In order 
to quantify the difference between two such functions, f and g, we use the squared 
L2-Norm, also called integrated squared error (ISE) , d(f , g) = J(f - g)2 dx , which 
can be calculated analytically if f and 9 are mixtures of Gaussians as in our case 
of pdfs estimated from data windows, 

(3) 

2.3 The HMM in the off-line case 

Before we can discuss the on-line variant , it is necessary to introduce the HMM and 
the respective off-line algorithm first. For a given a data sequence, {X'dT=l' we can 
obtain the corresponding sequence of pdfs {Pt(X)}tES, S = {W, ... , T}, according 
to eq. (2). We now construct a hidden Markov model (HMM) where each of these 
pdfs is represented by a state s E S, with S being the set of states in the HMM. 
For each state s, we define a continuous observation probability distribution, 

( ( ) I ) - 1 ( d(Ps(X),Pt(x))) 
PPt X s-~ exp - 22 ' 

V 21f <; <; 
(4) 

for observing a pdf Pt(x) in state s. Next, the initial state distribution {1fsLES 
of the HMM is given by the uniform distribution, 1fs = liN, with N = lSI being 
the number of states. Thus, each state is a-priori equally probable. The HMM 
transition matrix, A = (PijkjES, determines each probability to switch from a 
state Si to a state Sj. Our aim is to find a representation of the given sequence of 
pdfs in terms of a sequence of a small number of representative pdfs, that we call 
prototypes, which moreover exhibits only a small number of prototype changes. We 
therefore define A in such a way that transitions to the same state are k times more 
likely than transitions to any of the other states, 

_ { k+~-l Pij - 1 

k+N- l 

;ifi=J 

;ifi-j.J 
(5) 

This completes the definition of our HMM. Note that this HMM has only two free 
parameters, k and <;. The well-known Viterbi algorithm [13] can now be applied 
to the above HMM in order to compute the optimal - i.e. the most likely - state 
sequence of prototype pdfs that might have generated the given sequence of pdfs. 
This state sequence represents the segmentation we are aiming at . We can compute 
the most likely state sequence more efficiently if we compute it in terms of costs , 
c = -log(p), instead of probabilities p, i.e. instead of computing the maximum of 
the likelihood function L , we compute the minimum of the cost function , -log(L), 
which yields the optimal state sequence as well. In this way we can replace products 
by sums and avoid numerical problems [13]. In addition to that, we can further 
simplify the computation for the special case of our particular HMM architecture, 
which finally results in the following algorithm: 

For each time step, t = w, ... , T, we compute for all S E S the cost cs(t) of the opti­
mal state sequence from W to t, subject to the constraint that it ends in state S at 



time t. We call these constrained optimal sequences c-paths and the unconstrained 
optimum 0* -path. The iteration can be formulated as follows, with ds,t being a 
short hand for d(ps(x)'pt(x)) and bs,s denoting the Kronecker delta function: 

Initialization, Vs E S: 
Cs(W) := ds ,w, (6) 

Induction, Vs E S: 

cs(t) := ds t + min { cs(t - 1) + C (1- bs s)}, for t = W + 1, ... , T, (7) , sES ' 

Termination: 
0* := min { cs(T) } . 

sES 
(8) 

The regularization constant C, which is given by C = 2C;2 10g(k) and thus subsumes 
our two free HMM parameters, can be interpreted as transition cost for switching 
to a new state in the path.4 The optimal prototype sequence with minimal costs 
0* for the complete series of pdfs , which is determined in the last step, is obtained 
by logging and updating the c-paths for all states s during the iteration and finally 
choosing the one with minimal costs according to eq. (8). 

2.4 The on-line algorithm 

In order to turn the above segmentation algorithm into an on-line algorithm, we 
must restrict the incremental update in eq. (7), such that it only uses pdfs (and 
therewith states) from past data points. We neglect at this stage that memory and 
CPU resources are limited. 

Suppose that we have already processed data up to T - 1. When a new data point 
YT arrives at time T, we can generate a new embedded vector XT (once we have 
sampled enough initial data points for the embedding), we have a new pdf pT(X) 
(once we have sampled enough embedded vectors Xt for the first pdf window), and 
thus we have given a new HMM state. We can also readily compute the distances 
between the new pdf and all the previous pdfs, dT,t, t < T, according to eq. (3). 
A similarly simple and straightforward update of the costs, the c-paths and the 
optimal state sequence is only possible, however, if we neglect to consider potential 
c-paths that would have contained the new pdf as a prototype in previous segments. 
In that case we can simply reuse the c-paths from T - 1. The on-line update at 
time T for these restricted paths, that we henceforth denote with a tilde, can be 
performed as follows: 

For T = W, we have cw(W) := o*(W) := dw,w = O. For T > W: 

1. Compute the cost cT(T - 1) for the new state s = T at time T - 1: 
For t = w, ... , T - 1, compute 

{ 0 ift=W 
CT(t) :=dT,t+ min{cT(t-1) ; o*(t-1)+C}: else (9) 

and update 
o*(t) := CT(t), if CT(t) < o*(t). (10) 

Here we use all previous optimal segmentations o*(t), so we don't need to 
keep the complete matrix (cs(t))S,tES and repeatedly compute the minimum 

4We developed an algorithm that computes an appropriate value for the hyperparameter 
C from a sample set {it}. Due to the limited space we will present that algorithm in a 
forthcoming publication [8]. 



over all states. However, we must store and update the history of optimal 
segmentations 8* (t). 

2. Update from T - 1 to T and compute cs(T) for all states s E S obtained 
so far, and also get 8*(T): For s = W, ... , T , compute 

cs(T) := ds,T + min {cs(T - 1); 8*(T - 1) + C} (11) 

and finally get the cost of the optimal path 

8* (T) := min {cs(T)} . 
sES 

(12) 

As for the off-line case, the above algorithm only shows the update equations for 
the costs of the C- and 8* -paths. The associated state sequences must be logged 
simultaneously during the computation. Note that this can be done by just storing 
the sequence of switching points for each path. Moreover, we do not need to keep 
the full matrix (cs(t))s ,tES for the update, the most recent column is sufficient. 

So far we have presented the incremental version of the segmentation algorithm. 
This algorithm still needs an amount of memory and CPU time that is increasing 
with each new data point. In order to limit both resources to a fixed amount, we 
must remove old pdfs, i.e. old HMM states, at some point. We propose to do this 
by discarding all states with time indices smaller or equal to s each time the path 
associated with cs(T) in eq. (11) exhibits a switch back from a more recent state/pdf 
to the currently considered state s as a result of the min-operation in eq. (11). In 
the above algorithm this can simply be done by setting W := s + 1 in that case, 
which also allows us to discard the corresponding old cs(T)- and 8* (t)-paths, for all 
s::::: sand t < s. In addition, the "if t = W" initialization clause in eq. (9) must be 
ignored after the first such cut and the 8* (W - I)-path must therefore still be kept 
to compute the else-part also for t = W now. Moreover, we do not have CT(W -1) 
and we therefore assume min {CT(W - 1); 8*(W - 1) + C} = 8*(W - 1) + C (in 
eq. (9)). 

The explanation for this is as follows: A switch back in eq. (11) indicates that a 
new data distribution is established, such that the c-path that ends in a pdf state 
s from an old distribution routes its path through one of the more recent states 
that represent the new distribution, which means that this has lower costs despite 
of the incurred additional transition. Vice versa, a newly obtained pdf is unlikely 
to properly represent the previous mode then, which justifies our above assumption 
about CT (W -1). The effect of the proposed cut-off strategy is that we discard paths 
that end in pdfs from old modes but still allow to find the optimal pdf prototype 
within the current segment. 

Cut-off conditions occur shortly after mode changes in the data and cause the 
removal of HMM states with pdfs from old modes. However , if no mode change 
takes place in the incoming data sequence, no states will be discarded. We therefore 
still need to set a fixed upper limit", for the number of candidate paths/pdfs that 
are simultaneously under consideration if we only have limited resources available. 
When this limit is reached because no switches are detected, we must successively 
discard the oldest path/pdf stored, which finally might result in choosing a sub­
optimal prototype for that segment however. Ultimately, a continuous discarding 
even enforces a change of prototypes after 2", time steps if no switching is induced 
by the data until then. The buffer size", should therefore be as large as possible. In 
any case, the buffer overflow condition can be recorded along with the segmentation, 
which allows us to identify such artificial switchings. 



2.5 The labeling algorithm 

A labeling algorithm is required to identify segments that represent the same un­
derlying distribution and thus have similar pdf prototypes. The labeling algorithm 
generates labels for the segments and assigns identical labels to segments that are 
similar in this respect. To this end, we propose a relatively simple on-line clustering 
scheme for the prototypes, since we expect the prototypes obtained from the same 
underlying distribution to be already well-separated from the other prototypes as 
a result of the segmentation algorithm. We assign a new label to a segment if the 
distance of its associated prototype to all preceding prototypes exceeds a certain 
threshold e, and we assign the existing label of the closest preceding prototype 
otherwise. This can be written as 

l(R) = { ne.wlabel ,. if min1:'Sr<R {d(Pt(r) (x), Pt(R) (x))} > e (13) 
1 (mdexmml:'Sr<R {d(Pt(r) (x), Pt(R) (x))} ), else; 

with the initialization l(l) = newlabel. Here, r = 1, ... , R, denotes the enumeration 
of the segments obtained so far , and t(·) denotes the mapping to the index of the 
corresponding pdf prototype. Note that the segmentation algorithm might replace 
a number of recent pdf prototypes (and also recent segmentation bounds) during 
the on-line processing in order to optimize the segmentation each time new data is 
presented. Therefore, a relabeling of all segments that have changed is necessary in 
each update step of the labeler. 

As for the hyperparameters (J and C, we developed an algorithm that computes a 
suitable value for e from a sample set {X'd. We refer to our forthcoming publication 
[8]. 

3 Application 

We illustrate our approach by an application to a time series from switching dy­
namics based on the Mackey-Glass delay differential equation, 

dx(t) = -O.lx(t) 0.2x(t - td) . 
dt + 1 + x( t - td)l° 

(14) 

Eq. (14) describes a high-dimensional chaotic system that was originally introduced 
as a model of blood cell regulation [10]. In our example, four stationary operating 
modes, A, B, C, and D, are established by using different delays, td = 17, 23, 30, 
and 35, respectively. The dynamics operates stationary in one mode for a certain 
number of time steps, which is chosen at random between 200 and 300 (referring 
to sub-sampled data with a step size 6. = 6) . It then randomly switches to one of 
the other modes with uniform probability. This procedure is repeated 15 times, it 
thus generates a switching chaotic time series with 15 stationary segments. We then 
added a relatively large amount of "measurement" noise to the series: zero-mean 
Gaussian noise with a standard deviation of 30% of the standard deviation of the 
original series. 

The on-line segmentation algorithm was then applied to the noisy data, i.e. process­
ing was performed on-line although the full data set was already available in this 
case. The scalar time series was embedded on-the-fly by using m = 6 and T = 1 (on 
the sub-sampled data) and we used a pdf window of size W = 50. The algorithm 
processed 457 data points per second on a 1.33 GHz PC in MATLAB/C under 
Linux, including the display of the ongoing segmentation, where one can observe 
the re-adaptation of past segmentation bounds and labels when new data becomes 
available. 
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Figure 1: Segmentation of a switching Mackey-Glass time series with noise (bottom) 
that operates in four different modes (top). The on-line segmentation algorithm 
(middle) , which receives the data points one by one, but not the mode information, 
yields correct segmentation bounds almost everywhere. The on-line labeler, how­
ever, assigns more labels (6) than desired (4) , presumably due to the fact that the 
segments are very short and noisy. 

The final segmentation is shown in Fig. 1. Surprisingly, the bounds of the segments 
are almost perfectly recovered from the very noisy data set. The only two exceptions 
are the third segment from the right , which is noticeably shorter than the original 
mode, and the segment in the middle, which is split in two by the algorithm. 
This split actually makes sense if one compares it with the data: there is a visible 
change in the signal characteristics at that point (t ~ 1500) even though the delay 
parameter was not modified there. This change is recorded by the algorithm since 
it operates in an unsupervised way. 

The on-line labeling algorithm correctly assigns single labels to modes A, B, and 
C, but it assigns three labels (4, 5, and 6) to the segments of mode D, the most 
chaotic one. This is probably due to the small sample sizes (of the segments), in 
combination with the large amount of noise in the data. 

4 Discussion 

We presented an on-line method for the unsupervised segmentation and identifica­
tion of sequential data, in particular from non-stationary switching dynamics. It is 
based on an HMM where the number of states varies dynamically as an effect of 
the way the incoming data is processed. In contrast to other approaches , it pro­
cesses the data on-line and potentially even in real-time without training of any 
parameters. The method provides and updates a segmentation each time a new 
data point arrives. In effect, past segmentation bounds and labels are automat­
ically re-adapted when new incoming data points are processed. The number of 
prototypes and labels that identify the segments is not fixed but determined by the 



algorithm. We expect useful applications of this method in fields where complex 
non-stationary dynamics plays an important role, like, e.g., in physiology (EEG, 
MEG), climatology, in industrial applications, or in finance. 
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