
ADynamic HMM for On-line
Segmentation of Sequential Data

Jens Kohlmorgen*
Fraunhofer FIRST.IDA

Kekulestr . 7
12489 Berlin, Germany
jek@first·fraunhofer.de

Steven Lemm
Fraunhofer FIRST.IDA

Kekulestr. 7
12489 Berlin, Germany

lemm@first·fraunhofer.de

Abstract

We propose a novel method for the analysis of sequential data
that exhibits an inherent mode switching. In particular, the data
might be a non-stationary time series from a dynamical system
that switches between multiple operating modes. Unlike other ap­
proaches, our method processes the data incrementally and without
any training of internal parameters. We use an HMM with a dy­
namically changing number of states and an on-line variant of the
Viterbi algorithm that performs an unsupervised segmentation and
classification of the data on-the-fly, i.e. the method is able to pro­
cess incoming data in real-time. The main idea of the approach is
to track and segment changes of the probability density of the data
in a sliding window on the incoming data stream. The usefulness
of the algorithm is demonstrated by an application to a switching
dynamical system.

1 Introduction

Abrupt changes can occur in many different real-world systems like, for example,
in speech, in climatological or industrial processes, in financial markets, and also
in physiological signals (EEG/MEG). Methods for the analysis of time-varying dy­
namical systems are therefore an important issue in many application areas. In [12],
we introduced the annealed competition of experts method for time series from non­
linear switching dynamics, related approaches were presented, e.g., in [2, 6, 9, 14].
For a brief review of some of these models see [5], a good introduction is given in
[3].

We here present a different approach in two respects. First, the segmentation does
not depend on the predictability of the system. Instead, we merely estimate the
density distribution of the data and track its changes. This is particularly an im­
provement for systems where data is hard to predict , like, for example, EEG record­
ings [7] or financial data. Second, it is an on-line method. An incoming data stream
is processed incrementally while keeping the computational effort limited by a fixed

• http://www.first .fraunhofer.de/..-.jek

upper bound, i.e. the algorithm is able to perpetually segment and classify data
streams with a fixed amount of memory and CPU resources. It is even possible to
continuously monitor measured data in real-time, as long as the sampling rate is
not too high.l The main reason for achieving a high on-line processing speed is the
fact that the method, in contrast to the approaches above, does not involve any
training, i.e. iterative adaptation of parameters. Instead, it optimizes the segmen­
tation on-the-fly by means of dynamic programming [1], which thereby results in an
automatic correction or fine-tuning of previously estimated segmentation bounds.

2 The segmentation algorithm

We consider the problem of continuously segmenting a data stream on-line and
simultaneously labeling the segments. The data stream is supposed to have a se­
quential or temporal structure as follows: it is supposed to consist of consecutive
blocks of data in such a way that the data points in each block originate from
the same underlying distribution. The segmentation task is to be performed in an
unsupervised fashion, i.e. without any a-priori given labels or segmentation bounds.

2.1 Using pdfs as features for segmentation

Consider Yl, Y2 , Y3, ... , with Yt E Rn, an incoming data stream to be analyzed.
The sequence might have already passed a pre-processing step like filtering or sub­
sampling, as long as this can be done on-the-fly in case of an on-line scenario. As
a first step of further processing, it might then be useful to exploit an idea from
dynamical systems theory and embed the data into a higher-dimensional space,
which aims to reconstruct the state space of the underlying system,

Xt = (Yt,Yt-n'" ,Yt -(m-l)r)' (1)
The parameter m is called the embedding dimension and T is called the delay
parameter of the embedding. The dimension of the vectors Xt thus is d = m n. The
idea behind embedding is that the measured data might be a potentially non-linear
projection of the systems state or phase space. In any case, an embedding in a
higher-dimensional space might help to resolve structure in the data, a property
which is exploited, e.g., in scatter plots. After the embedding step one might
perform a sub-sampling of the embedded data in order to reduce the amount of
data for real-time processing.2 Next, we want to track the density distribution of
the embedded data and therefore estimate the probability density function (pdf) in a
sliding window of length W. We use a standard density estimator with multivariate
Gaussian kernels [4] for this purpose, centered on the data points3 in the window
{ ~ }W-l
Xt-w w=o,

() 1 ~l 1 ((x - Xt_w)2)
Pt x = W ~ (27fa2)d/2 exp - 2a2 .

(2)

The kernel width a is a smoothing parameter and its value is important to obtain
a good representation of the underlying distribution. We propose to choose a pro­
portional to the mean distance of each Xt to its first d nearest neighbors, averaged
over a sample set {xt}.

1 In our reported application we can process data at 1000 Hz (450 Hz including display)
on a 1.33 GHz PC in MATLAB/C under Linux, which we expect is sufficient for a large
number of applications.

2In that case, our further notation of time indices would refer to the subsampled data.
3We use if to denote a specific vector-valued point and x to denote a vector-valued

variable.

2.2 Similarity of two pdfs

Once we have sampled enough data points to compute the first pdf according to
eq. (2), we can compute a new pdf with each new incoming data point. In order
to quantify the difference between two such functions, f and g, we use the squared
L2-Norm, also called integrated squared error (ISE) , d(f , g) = J(f - g)2 dx , which
can be calculated analytically if f and 9 are mixtures of Gaussians as in our case
of pdfs estimated from data windows,

(3)

2.3 The HMM in the off-line case

Before we can discuss the on-line variant , it is necessary to introduce the HMM and
the respective off-line algorithm first. For a given a data sequence, {X'dT=l' we can
obtain the corresponding sequence of pdfs {Pt(X)}tES, S = {W, ... , T}, according
to eq. (2). We now construct a hidden Markov model (HMM) where each of these
pdfs is represented by a state s E S, with S being the set of states in the HMM.
For each state s, we define a continuous observation probability distribution,

(() I) - 1 (d(Ps(X),Pt(x)))
PPt X s-~ exp - 22 '

V 21f <; <;
(4)

for observing a pdf Pt(x) in state s. Next, the initial state distribution {1fsLES
of the HMM is given by the uniform distribution, 1fs = liN, with N = lSI being
the number of states. Thus, each state is a-priori equally probable. The HMM
transition matrix, A = (PijkjES, determines each probability to switch from a
state Si to a state Sj. Our aim is to find a representation of the given sequence of
pdfs in terms of a sequence of a small number of representative pdfs, that we call
prototypes, which moreover exhibits only a small number of prototype changes. We
therefore define A in such a way that transitions to the same state are k times more
likely than transitions to any of the other states,

_ { k+~-l Pij - 1

k+N- l

;ifi=J

;ifi-j.J
(5)

This completes the definition of our HMM. Note that this HMM has only two free
parameters, k and <;. The well-known Viterbi algorithm [13] can now be applied
to the above HMM in order to compute the optimal - i.e. the most likely - state
sequence of prototype pdfs that might have generated the given sequence of pdfs.
This state sequence represents the segmentation we are aiming at . We can compute
the most likely state sequence more efficiently if we compute it in terms of costs ,
c = -log(p), instead of probabilities p, i.e. instead of computing the maximum of
the likelihood function L , we compute the minimum of the cost function , -log(L),
which yields the optimal state sequence as well. In this way we can replace products
by sums and avoid numerical problems [13]. In addition to that, we can further
simplify the computation for the special case of our particular HMM architecture,
which finally results in the following algorithm:

For each time step, t = w, ... , T, we compute for all S E S the cost cs(t) of the opti­
mal state sequence from W to t, subject to the constraint that it ends in state S at

time t. We call these constrained optimal sequences c-paths and the unconstrained
optimum 0* -path. The iteration can be formulated as follows, with ds,t being a
short hand for d(ps(x)'pt(x)) and bs,s denoting the Kronecker delta function:

Initialization, Vs E S:
Cs(W) := ds ,w, (6)

Induction, Vs E S:

cs(t) := ds t + min { cs(t - 1) + C (1- bs s)}, for t = W + 1, ... , T, (7) , sES '

Termination:
0* := min { cs(T) } .

sES
(8)

The regularization constant C, which is given by C = 2C;2 10g(k) and thus subsumes
our two free HMM parameters, can be interpreted as transition cost for switching
to a new state in the path.4 The optimal prototype sequence with minimal costs
0* for the complete series of pdfs , which is determined in the last step, is obtained
by logging and updating the c-paths for all states s during the iteration and finally
choosing the one with minimal costs according to eq. (8).

2.4 The on-line algorithm

In order to turn the above segmentation algorithm into an on-line algorithm, we
must restrict the incremental update in eq. (7), such that it only uses pdfs (and
therewith states) from past data points. We neglect at this stage that memory and
CPU resources are limited.

Suppose that we have already processed data up to T - 1. When a new data point
YT arrives at time T, we can generate a new embedded vector XT (once we have
sampled enough initial data points for the embedding), we have a new pdf pT(X)
(once we have sampled enough embedded vectors Xt for the first pdf window), and
thus we have given a new HMM state. We can also readily compute the distances
between the new pdf and all the previous pdfs, dT,t, t < T, according to eq. (3).
A similarly simple and straightforward update of the costs, the c-paths and the
optimal state sequence is only possible, however, if we neglect to consider potential
c-paths that would have contained the new pdf as a prototype in previous segments.
In that case we can simply reuse the c-paths from T - 1. The on-line update at
time T for these restricted paths, that we henceforth denote with a tilde, can be
performed as follows:

For T = W, we have cw(W) := o*(W) := dw,w = O. For T > W:

1. Compute the cost cT(T - 1) for the new state s = T at time T - 1:
For t = w, ... , T - 1, compute

{ 0 ift=W
CT(t) :=dT,t+ min{cT(t-1) ; o*(t-1)+C}: else (9)

and update
o*(t) := CT(t), if CT(t) < o*(t). (10)

Here we use all previous optimal segmentations o*(t), so we don't need to
keep the complete matrix (cs(t))S,tES and repeatedly compute the minimum

4We developed an algorithm that computes an appropriate value for the hyperparameter
C from a sample set {it}. Due to the limited space we will present that algorithm in a
forthcoming publication [8].

over all states. However, we must store and update the history of optimal
segmentations 8* (t).

2. Update from T - 1 to T and compute cs(T) for all states s E S obtained
so far, and also get 8*(T): For s = W, ... , T , compute

cs(T) := ds,T + min {cs(T - 1); 8*(T - 1) + C} (11)

and finally get the cost of the optimal path

8* (T) := min {cs(T)} .
sES

(12)

As for the off-line case, the above algorithm only shows the update equations for
the costs of the C- and 8* -paths. The associated state sequences must be logged
simultaneously during the computation. Note that this can be done by just storing
the sequence of switching points for each path. Moreover, we do not need to keep
the full matrix (cs(t))s ,tES for the update, the most recent column is sufficient.

So far we have presented the incremental version of the segmentation algorithm.
This algorithm still needs an amount of memory and CPU time that is increasing
with each new data point. In order to limit both resources to a fixed amount, we
must remove old pdfs, i.e. old HMM states, at some point. We propose to do this
by discarding all states with time indices smaller or equal to s each time the path
associated with cs(T) in eq. (11) exhibits a switch back from a more recent state/pdf
to the currently considered state s as a result of the min-operation in eq. (11). In
the above algorithm this can simply be done by setting W := s + 1 in that case,
which also allows us to discard the corresponding old cs(T)- and 8* (t)-paths, for all
s::::: sand t < s. In addition, the "if t = W" initialization clause in eq. (9) must be
ignored after the first such cut and the 8* (W - I)-path must therefore still be kept
to compute the else-part also for t = W now. Moreover, we do not have CT(W -1)
and we therefore assume min {CT(W - 1); 8*(W - 1) + C} = 8*(W - 1) + C (in
eq. (9)).

The explanation for this is as follows: A switch back in eq. (11) indicates that a
new data distribution is established, such that the c-path that ends in a pdf state
s from an old distribution routes its path through one of the more recent states
that represent the new distribution, which means that this has lower costs despite
of the incurred additional transition. Vice versa, a newly obtained pdf is unlikely
to properly represent the previous mode then, which justifies our above assumption
about CT (W -1). The effect of the proposed cut-off strategy is that we discard paths
that end in pdfs from old modes but still allow to find the optimal pdf prototype
within the current segment.

Cut-off conditions occur shortly after mode changes in the data and cause the
removal of HMM states with pdfs from old modes. However , if no mode change
takes place in the incoming data sequence, no states will be discarded. We therefore
still need to set a fixed upper limit", for the number of candidate paths/pdfs that
are simultaneously under consideration if we only have limited resources available.
When this limit is reached because no switches are detected, we must successively
discard the oldest path/pdf stored, which finally might result in choosing a sub­
optimal prototype for that segment however. Ultimately, a continuous discarding
even enforces a change of prototypes after 2", time steps if no switching is induced
by the data until then. The buffer size", should therefore be as large as possible. In
any case, the buffer overflow condition can be recorded along with the segmentation,
which allows us to identify such artificial switchings.

2.5 The labeling algorithm

A labeling algorithm is required to identify segments that represent the same un­
derlying distribution and thus have similar pdf prototypes. The labeling algorithm
generates labels for the segments and assigns identical labels to segments that are
similar in this respect. To this end, we propose a relatively simple on-line clustering
scheme for the prototypes, since we expect the prototypes obtained from the same
underlying distribution to be already well-separated from the other prototypes as
a result of the segmentation algorithm. We assign a new label to a segment if the
distance of its associated prototype to all preceding prototypes exceeds a certain
threshold e, and we assign the existing label of the closest preceding prototype
otherwise. This can be written as

l(R) = { ne.wlabel ,. if min1:'Sr<R {d(Pt(r) (x), Pt(R) (x))} > e (13)
1 (mdexmml:'Sr<R {d(Pt(r) (x), Pt(R) (x))}), else;

with the initialization l(l) = newlabel. Here, r = 1, ... , R, denotes the enumeration
of the segments obtained so far , and t(·) denotes the mapping to the index of the
corresponding pdf prototype. Note that the segmentation algorithm might replace
a number of recent pdf prototypes (and also recent segmentation bounds) during
the on-line processing in order to optimize the segmentation each time new data is
presented. Therefore, a relabeling of all segments that have changed is necessary in
each update step of the labeler.

As for the hyperparameters (J and C, we developed an algorithm that computes a
suitable value for e from a sample set {X'd. We refer to our forthcoming publication
[8].

3 Application

We illustrate our approach by an application to a time series from switching dy­
namics based on the Mackey-Glass delay differential equation,

dx(t) = -O.lx(t) 0.2x(t - td) .
dt + 1 + x(t - td)l°

(14)

Eq. (14) describes a high-dimensional chaotic system that was originally introduced
as a model of blood cell regulation [10]. In our example, four stationary operating
modes, A, B, C, and D, are established by using different delays, td = 17, 23, 30,
and 35, respectively. The dynamics operates stationary in one mode for a certain
number of time steps, which is chosen at random between 200 and 300 (referring
to sub-sampled data with a step size 6. = 6) . It then randomly switches to one of
the other modes with uniform probability. This procedure is repeated 15 times, it
thus generates a switching chaotic time series with 15 stationary segments. We then
added a relatively large amount of "measurement" noise to the series: zero-mean
Gaussian noise with a standard deviation of 30% of the standard deviation of the
original series.

The on-line segmentation algorithm was then applied to the noisy data, i.e. process­
ing was performed on-line although the full data set was already available in this
case. The scalar time series was embedded on-the-fly by using m = 6 and T = 1 (on
the sub-sampled data) and we used a pdf window of size W = 50. The algorithm
processed 457 data points per second on a 1.33 GHz PC in MATLAB/C under
Linux, including the display of the ongoing segmentation, where one can observe
the re-adaptation of past segmentation bounds and labels when new data becomes
available.

actual modes

mode D

modeC

mode B

mode A

labels 1 2 3 4 3 561 3 3 6 2 2

bounds

on-line segmentation

xl!)

Figure 1: Segmentation of a switching Mackey-Glass time series with noise (bottom)
that operates in four different modes (top). The on-line segmentation algorithm
(middle) , which receives the data points one by one, but not the mode information,
yields correct segmentation bounds almost everywhere. The on-line labeler, how­
ever, assigns more labels (6) than desired (4) , presumably due to the fact that the
segments are very short and noisy.

The final segmentation is shown in Fig. 1. Surprisingly, the bounds of the segments
are almost perfectly recovered from the very noisy data set. The only two exceptions
are the third segment from the right , which is noticeably shorter than the original
mode, and the segment in the middle, which is split in two by the algorithm.
This split actually makes sense if one compares it with the data: there is a visible
change in the signal characteristics at that point (t ~ 1500) even though the delay
parameter was not modified there. This change is recorded by the algorithm since
it operates in an unsupervised way.

The on-line labeling algorithm correctly assigns single labels to modes A, B, and
C, but it assigns three labels (4, 5, and 6) to the segments of mode D, the most
chaotic one. This is probably due to the small sample sizes (of the segments), in
combination with the large amount of noise in the data.

4 Discussion

We presented an on-line method for the unsupervised segmentation and identifica­
tion of sequential data, in particular from non-stationary switching dynamics. It is
based on an HMM where the number of states varies dynamically as an effect of
the way the incoming data is processed. In contrast to other approaches , it pro­
cesses the data on-line and potentially even in real-time without training of any
parameters. The method provides and updates a segmentation each time a new
data point arrives. In effect, past segmentation bounds and labels are automat­
ically re-adapted when new incoming data points are processed. The number of
prototypes and labels that identify the segments is not fixed but determined by the

algorithm. We expect useful applications of this method in fields where complex
non-stationary dynamics plays an important role, like, e.g., in physiology (EEG,
MEG), climatology, in industrial applications, or in finance.

References

[1] Bellman, R. E. (1957). Dynamic Programming, Princeton University Press,
Princeton, N J .

[2] Bengio, Y, Frasconi, P. (1995). An Input Output HMM Architecture. In: Ad­
vances in Neural Information Processing Systems 7 (eds. Tesauro, Touretzky,
Leen), Morgan Kaufmann, 427- 434.

[3] Bengio, Y (1999). Markovian Models for Sequential Data. Neural Computing
Surveys, http://www.icsi.berkeley.edu/~jagota/NCS, 2:129-162.

[4] Bishop, C. M. (1995). Neural Networks for Pattern Recognition, Oxford Univ.
Press, NY.

[5] Husmeier, D. (2000). Learning Non-Stationary Conditional Probability Distri­
butions. Neural Networks 13, 287- 290.

[6] Kehagias , A., Petridis, V. (1997). Time Series Segmentation using Predictive
Modular Neural Networks. Neural Computation 9, 1691- 1710.

[7] Kohlmorgen, J. , Miiller, K.-R., Rittweger, J. , Pawelzik, K. (2000). Identifi­
cation of Nonstationary Dynamics in Physiological Recordings, Bioi Cybern
83(1),73- 84.

[8] Kohlmorgen, J. , Lemm, S. , to appear.

[9] Liehr, S., Pawelzik, K. , Kohlmorgen, J ., Miiller, K.-R. (1999). Hidden Markov
Mixtures of Experts with an Application to EEG Recordings from Sleep. Theo
Biosci 118, 246- 260.

[10] Mackey, M., Glass, 1. (1977). Oscillation and Chaos in a Physiological Control
System. Science 197, 287.

[11] Packard, N. H., Crutchfield J. P. , Farmer, J . D. , Shaw, R. S. (1980). Geometry
from a Time Series. Phys Rev Letters 45, 712- 716.

[12] Pawelzik, K., Kohlmorgen, J. , Miiller , K.-R. (1996). Annealed Competition of
Experts for a Segmentation and Classification of Switching Dynamics. Neural
Computation 8(2), 340- 356.

[13] Rabiner, L. R. (1989). A Tutorial on Hidden Markov Models and Selected
Applications in Speech Recognition, Proceedings of the IEEE 77(2) , 257- 286.

[14] Ramamurti, V., Ghosh, J. (1999). Structurally Adaptive Modular Networks
for Non-Stationary Environments. IEEE Tr. Neural Networks 10(1), 152- 160.

