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Abstract 

Locally Linear Embedding (LLE) is an elegant nonlinear 
dimensionality-reduction technique recently introduced by Roweis 
and Saul [2]. It fails when the data is divided into separate groups. 
We study a variant of LLE that can simultaneously group the data 
and calculate local embedding of each group. An estimate for the 
upper bound on the intrinsic dimension of the data set is obtained 
automatically. 

1 Introduction 

Consider a collection of N data points Xi E ]RD. Suppose that , while the dimension 
D is large, we have independent information suggesting that the data are distributed 
on a manifold of dimension d < < D. In many circumstances it is beneficial to 
calculate the coordinates Yi E ]Rd of the data on the lower-dimensional manifold, 
both because the shape of the manifold may yield some insight in the process that 
produced the data, and because it is cheaper to store and manipulate the data when 
it is embedded in fewer dimensions. How can we compute such coordinates? 

Principal component analysis (PCA) is a classical technique which works well when 
the data lie close to a flat manifold [1]. Elegant methods for dealing with data that 
is distributed on curved manifolds have been recently proposed [3, 2]. We study 
one of them, Locally Linear Embedding (LLE) [2], by Roweis and Saul. While LLE 
is not designed to handle data that are disconnected, i.e. separated into groups, 
we show that a simple variation of the method will handle this situation correctly. 
Furthermore, both the number of groups and the upper bound on the intrinsic 
dimension of the data may be estimated automatically, rather than being given 
a-priori. 



2 Locally linear embedding 

The key insight inspiring LLE is that, while the data may not lie close to a glob­
ally linear manifold, it may be approximately locally linear, and in this case each 
point may be approximated as a linear combination of its nearest neighbors. The 
coefficients of this linear combination carries the vital information for constructing 
a lower-dimensional linear embedding. 

More explicitly: consider a data set {Xd i=l...,N E ]RD. The local linear structure 
can be easily encoded in a sparse N by N matrix W, proceeding as follows. 

The first step is to choose a criterion to determine the neighbors of each point. 
Roweis and Saul chose an integer number K and pick, for every point, the K points 
nearest to it. For each point Xi then, they determine the linear combination of its 
neighbors which best approximates the point itself. The coefficients of such linear 
combinations are computed by minimizing the quadratic cost function: 

N 

f(W) = L IXi - L WijXj 12 (1) 
j=1 

while enforcing the constraints Wij = 0 if Xj is not a neighbor of Xi , and 

L:.f=1 Wij = 1 for every i; these constraints ensure that the approximation of 

Xi ~ Xi = L:.f=1 WijXj lies in the affine subspace generated by the K nearest 
neighbors of Xi, and that the solution W is translation-invariant . This least square 
problem may be solved in closed form [2]. 

The next step consists of calculating a set {Yih=1, ... ,N of points in ]Rd, reproducing 
as faithfully as possible the local linear structure encoded in W. This is done 
minimizing a cost function 

N N 

<I>(Y) = L IYi - L Wij Yjl2 (2) 
i=1 j =1 

To ensure the uniqueness of the solution two constraint are imposed: translation 
invariance by placing the center of gravity of the data in the origin, i.e. L:i Yi = 0, 

and normalized unit covariance of the Yi's, i.e. tt L:~1 Yi Q9 Yi = I. 

Roweis and Saul prove that <I>(Y) = tr(yT MY), where M is defined as 

M = (I - wf (I - W). 

The minimum of the function <I>(Y) for the d-th dimensional representation is then 
obtained with the following recipe. Given d, consider the d + 1 eigenvectors asso­
ciated to the d + 1 smallest eigenvalues of the matrix M. Then discard the very 
first one. The rows of the matrix Y whose columns are given by such d eigenvectors 
give the desired solution. The first eigenvector is discarded because it is a vector 
composed of all ones, with 0 as eigenvalue. As we shall see, this is true when the 
data set is 'connected' . 

2.1 Disjoint components 

In LLE every data point has a set of K neighbors. This allows us to partition of 
the whole data set X into K -connected components, corresponding to the intuitive 
visual notion of different 'groups' in the data set. 

We say that a partition X = UiUi is finer than a partition X = Uj 10 if every Ui 
is contained in some 10. The partition in K -connected components is the finest 
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Figure 1: (Top-left) 2D data Xi distributed along a curve (the index i increases 
from left to right for convenience). (Top-right) Coordinates Yi of the same points 
calculated by LLE with K = 10 and d = 1. The x axis represents the index 
i and the y axis represents Yi. This is a good parametrization which recognizes 
the intrinsically I-dimensional structure of the data. (Bottom-left) As above, the 
data is now disconnected, i.e. points in different groups do not share neighbors. 
(Bottom-right) One-dimensional LLE calculated on the data (different symbols used 
for points belonging to the different groups). Notice that the Yi's are not a good 
representation of the data any longer since they are constant within each group. 

partition of the data set such that if two points have at least one neighbor in 
common, or one is a neighbor of the other, then they belong to the same component. 

Note that for any two points in the same component, we can find an ordered se­
quence of points having them as endpoints, such that two consecutive points have 
at least one neighbor in common. A set is K -connected if it contains only one 
K-connected component . 

Consider data that is not K -connected, then LLE does not compute a good 
parametrization, as illustrated in Figure 1. 

2.2 Choice of d. 

How is d chosen? The LLE method [2] is based on the assumption that d is known. 
What if we do not know it in advance? If we overestimate d it then LLE behaves 
pathologically. 

Let us consider a straight line, drawn in 1R3 . Figure 2 shows what happens if d 
is chosen equal to 1 and to 2. When the choice is 2 (right) then LLE 'makes up' 
information and generates a somewhat arbitrary 2D curve. 

As an effect of the covariance constraint, the representation curves the line, the 



Figure 2: Coordinates Yi calculated for data Xi distributed along a straight line in 
]RD = ]R3 when the dimension d is chosen as d = 1 (Left), and d = 2 (Right). The 
index i is indicated along the x axis (Left) and along the 2D curve (Right). 

curvature can be very high, and even locally we possibly completely lose the lin­
ear structure. The problem is , we chosed the wrong target dimension. The one­
dimensional LLE works in fact perfectly (see Figure 2, left). 

PCA provides a principled way of estimating the intrinsic dimensionality of the 
data: it corresponds to the number of large singular values of the covariance matrix 
of the data. Is such an estimate possible with LLE as well? 

3 Dimensionality detection: the size of the eigenvalues 

In the example of Figure 2 the two dimensional representation of the data (d = 2) 
is clearly the 'wrong' one, since the data lie in a one-dimensional linear subspace. 
In this case the unit covariance constraint in minimizing the function <I>(Y) is not 
compatible with the linear structure. How could one have obtained the correct 
estimate of d? The answer is that d + 1 should be less or equal to the number of 
eigenvalues of M that are close to zero. 

Proposition 1. Assume that the data Xi E ]RD is K -connected and that it is 
locally fiat, i.e. there exists a corresponding set Yi E ]Rd for some d > 0 such that 
Yi = L:j Wij}j (zero-error approximation), the set {Yi} has rank d, and has the 

origin as center of gravity: L:~1 Yi = o. Call z the number of zero eigenvalues of 
the matrix M. Then d < z . 

Proof. By construction the N vector composed of all 1 's is a zero-eigenvector of 
M. Moreover, since the Yi are such that the addends of <I> have zero error, then the 
matrix Y , which by hypothesis has rank d, is in the kernel of I - W and hence in 
the kernel of M. Due to the center of gravity constraint, all the columns of Y are 
orthogonal to the all 1 's vector. Hence M has at least d + 1 zero eigenvalues. D 

Therefore, in order to estimate d, one may count the number z of zero eigenvalues 
of M and choose any d < z. Within this range, smaller values of d will yield more 
compact representations, while larger values of d will yield more expressive ones, 
i.e. ones that are most faithful to the original data. 

What happens in non-ideal conditions, i.e. when the data are not exactly locally 
fiat , and when one has to contend with numerical noise? The appendix provides an 
argument showing that the statement in the proposition is robust with respect to 
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Figure 3: (Left) Eigenvalues for the straight-line data Xi used for Figure 2. (Right) 
Eigenvalues for the curve data shown in the top-left panel of Figure 1. In both cases 
the two last eigenvalue are orders of magnitude smaller than the other eigenvalues, 
indicating a maximal dimension d = 1 for the data. 

noise, i.e. numerical errors and small deviations from the ideal locally flat data will 
result in small deviations from the ideal zero-value of the first d + 1 eigenvalues, 
where d is used here for the 'intrinsic' dimension of the data. This is illustrated in 
Figure 3. 

In Figure 4 we describe the successful application of the dimensionality detection 
method on a data set of synthetically generated grayscale images. 

4 LLE and grouping 

In the first example (2.1) we pointed out the limits of LLE when applied to multiple 
components of data. It appears then that a grouping procedure should always 
preceed LLE. The data would be first split into its component groups, each one 
of which should be then analyzed with LLE. A deeper analysis of the algorithm 
though, suggests that grouping and LLE could actually be performed at the same 
time. 

Proposition 2. Suppose the data set {Xdi=l , ... ,N E ll~P is partitioned into m K­
connected components. Then there exists an m-dimensional eigenspace of M with 
zero eigenvalue which admits a basis {vih=l, ... ,m where the Vi have entries that are 
either '1' or '0' . More precisely: each Vi corresponds to one of the groups of the 
data and takes value Vi ,j = 1 for j in the group, Vi ,j = 0 for j not in the group. 

Proof. Without loss of generality, assume that the indexing of the data X i is such 
that the weight matrix W , and consequent ely the matrix M, are block-diagonal 
with m blocks, each block corresponding to one of the groups of data. This is 
achieved by a permutation of indices, which will not effect any further step of our 
algorithm. As a direct consequence of the row normalization of W, each block of 
M has exactly one eigenvector composed of all ones, with eigenvalue O. Therefore, 
there is an m-dimensional eigenspace with eigenvalue 0, and there exist a basis of 
it, each vector of which has value 1 on a certain component, 0 otherwise. D 

Therefore one may count the number of connected components by computing the 
eigenvectors of M corresponding to eigenvalue 0, and counting the number m of 
those vectors Vi whose components take few discrete values (see Figure 6). Each 
index i may be assigned to a group by clustering based on the value of Vl, ... , Vm . 



Figure 4: (Left) A sample from a data set of N=1000, 40 by 40 grayscale images, 
each one thought as a point in a 1600 dimensional vector space. In each image, 
a slightly blurred line separates a dark from a bright portion. The orientation of 
the line and its distance from the center of the image are variable. (Middle) The 
non-zero eigenvalues of M. LLE is performed with K=20. The 2nd and 3rd smallest 
eigenvalues are of smaller size than the others, giving an upper bound of 2 on the 
intrinsic dimension of the data set. (Right) The 2-dimensional LLE representation. 
The polar coordinates, after rescaling, are the distance of the dividing line from the 
center and its orientation. 

". 

Figure 5: The data set is analogous to the one used above (N =1000, 40 by 40 
grayscale images, LLE performed with K=20). The orientation of the line dividing 
the dark from the bright portion is now only allowed to vary in two disjoint intervals. 
(Middle) The non-zero eigenvalues of M. (Left and Right) The 3rd and 5th (resp. 
4th and 6th) eigenvectors of M are used for the LLE representation of the first (resp. 
the second) K-component. 
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Figure 6: (Left) The last six eigenvectors of M for the broken parabola of Figure 1 
shown, top to bottom, in reverse order of magnitude of the corresponding eigenvalue. 
The x axis is associated to the index i. (Right) The eigenvalues of the same (log 
scale). Notice that the last six are practically zero. The eigenvectors corresponding 
to the three last eigenvalues have discrete values indicating that the data is split in 
three groups. There are z=6 zero-eigenvalues indicating that the dimension of the 
data is d:::; z/m - 1 = 1. 

In the Appendix (A) we show that such a process is robust with respect to numerical 
noise. It is also robust to small perturbations of the block-diagonal structure of M 
(see Figure 7). This makes the use of LLE for grouping purposes convenient. Should 
the K-connected components be completely separated, the partition would be easily 
obtained via a more efficient graph-search algorithm. 

The proof is carried out for ordered indices as in Fig. 3 but it is invariant under 
index permutation. 

The analysis of Proposition 1 may be extended to the dimension of each of the 
m groups according to Proposition 2. Therefore, in the ideal case, we will find z 
zero-eigenvalues of M which, together with the number m obtained by counting 
the discrete-valued eigenvectors may be used to estimate the maximal d using z ~ 
m(d + 1). This behavior may be observed experimentally, see Figures 6 and 5. 

5 Conclusions 

We have examined two difficulties of the Locally Linear Embedding method [2] and 
shown that, in a neighborhood of ideal conditions, they may be solved by a careful 
exam of eigenvectors of the matrix M that are associated to very small eigenvalues. 

More specifically: the number of groups in which the data is partitioned corresponds 
to the number of discrete-valued eigenvectors, while the maximal dimension d of 
the low-dimensional embedding may be obtained by dividing the number of small 
eigenvalues by m and subtracting 1. 

Both the groups and the low-dimensional embedding coordinates may be computed 
from the components of such eigenvectors. 

Our algorithms have mainly been tested on synthetically generated data. Further 
investigation on real data sets is necessary in order to validate our theoretical results. 
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Figure 7: (Left) 2D Data Xi distributed along a broken parabola. Nevertheless, 
for K=14, the components are not completely K-disconnected (a different symbol is 
used for the neighbors of the leftmost point on the rightmost component). (Right) 
The set of eigenvalues for M. A set of two almost-zero eigenvalues and a set of two 
of small size are visible. 
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A Appendix 

In Proposition 2 of Section 4 we proved that during the LLE procedure we can 
automatically detect the number of K -connected components, in case there is no 
noise. Similarly, in Proposition 1 of Section 3 we proved that under ideal conditions 
(no noise , locally flat data), we can determine an estimate for the intrinsic dimension 
of the data. Our next goal is to establish a certain robustness of these results in 
the case there is numerical noise, or the components are not completely separated, 
or the data is not exactly locally flat . 

In general, suppose we have a non degenerate matrix A, and an orthonormal basis 
of eigenvectors VI, ... , Vm , with eigenvalues AI , ... Am. As a consequence of a small 
perturbation of the matrix into A + dA, we will have eigenvectors Vi + dVi with 
eigenvalues Ai + dAi' The unitary norm constraint makes sure that dVi is orthog­
onal to Vi and could be therefore written as dVi = L:k#i O'.ikVk. Using again the 
orthonormality, one can derive expressions for the perturbations of Ai and Vi : 

dAi 
O'.ij (Ai - Aj) 

< vi,dAvi > 
< Vj,dAVi > . 

This shows that if the perturbation dA has order E, then the perturbations dA and 
O'.ij are also of order E. Notice that we are not interested in perturbations O'.ij within 
the eigenspace of eigenvalue 0, but rather those orthogonal to it, and therefore 
Ai =j:. Aj. 


