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Abstract

We study the dynamics of a Hebbian ICA algorithm extracting a sin-
gle non-Gaussian component from a high-dimensional Gaussian back-
ground. For both on-line and batch learning we find that a surprisingly
large number of examples are required to avoid trapping in a sub-optimal
state close to the initial conditions. To extract a skewed signal at least
O(N?) examples are required for N-dimensional data and O(N3) exam-
ples are required to extract a symmetrical signal with non-zero kurtosis.

1 Introduction

Independent component analysis (ICA) is a statistical modelling technique which has at-
tracted a significant amount of research interest in recent years (for a review, see Hyvarinen,
1999). The goal of ICA is to find a representation of data in terms of a combination of sta-
tistically independent variables. A number of neural learning algorithms have been applied
to this problem, as detailed in the aforementioned review.

Theoretical studies of ICA algorithms have mainly focussed on asymptotic stability and
efficiency, using the established results of stochastic approximation theory. However, in
practice the transient stages of learning will often be more significant in determining the
success of an algorithm. In this paper a Hebbian ICA algorithm is analysed in both on-line
and batch mode, highlighting the critical importance of the transient dynamics. We find that
a surprisingly large number of training examples are required in order to avoid trapping in
a sub-optimal state close to the initial conditions. To detect a skewed signal at least O(N?)
examples are required for N-dimensional data, while O(N?3) examples are required for a
symmetric signal with non-zero kurtosis. In addition, for on-line learning we show that
the maximal initial learning rate which allows successful learning is unusually low, being

O(N~%) for a skewed signal and O(N=2) for a symmetric signal.

In order to obtain a tractable model, we consider the limit of high-dimensional data and
study an idealised data set in which a single non-Gaussian source is mixed into a large
number of Gaussian sources. Recently, one of us considered a more general model in
which an arbitrary, but relatively small, number of non-Gaussian sources were mixed into
a high-dimensional Gaussian background (Rattray, 2002). In that work a solution to the
dynamics of the on-line algorithm was obtained in closed form for O(V) learning iterations
and a simple solution to the asymptotic dynamics under the optimal learning rate decay was
obtained. However, it was noted there that modelling the dynamics on an O(NN') timescale
is not always appropriate, because the algorithm typically requires much longer in order to



escape from a class of metastable states close to the initial conditions. In order to elucidate
this effect in greater detail we focus here on the simplest case of a single non-Gaussian
source and we will limit our analysis to the dynamics close to the initial conditions.

In recent years a number of on-line learning algorithms, including back-propagation and
Sanger’s PCA algorithm, have been studied using techniques from statistical mechanics
(see, for example, Biehl (1994); Biehl and Schwarze (1995); Saad and Solla (1995) and
contributions in Saad (1998)). These analyses exploited the “self-averaging” property of
certain macroscopic variables in order to obtain ordinary differential equations describing
the deterministic evolution of these quantities over time in the large IV limit. In the present
case the appropriate macroscopic quantity does not self-average and fluctuations have to
be considered even in the limit. In this case it is more natural to model the on-line learning
dynamics as a diffusion process (see, for example Gardiner, 1985).

2 DataModd

In order to apply the Hebbian ICA algorithm we must first sphere the data, ie. linearly
transform the data so that it has zero mean and an identity covariance matrix. This can be
achieved by standard transformations in a batch setting or for on-line learning an adaptive
sphering algorithm, such as the one introduced by Cardoso and Laheld (1996), could be
used. To simplify the analysis it is assumed here that the data has already been sphered.
Without loss of generality it can also be assumed that the sources each have unit variance.

Each data point z is generated from a noiseless linear mixture of sources which are decom-
posed into a single non-Gaussian source s and N — 1 uncorrelated Gaussian components,
n ~ N(0,In_1). We will also decompose the mixing matrix A into a column vector a
anda N x (N — 1) rectangular matrix A,, associated with the non-Gaussian and Gaussian
components respectively,

L)

m:A[
n

] =az;s+ An. D
We will consider both the on-line case, in which a new 11D example x? is presented to the
algorithm at each time ¢ and then discarded, and also the batch case, in which a finite set
of examples are available to the algorithm. To conform with the model assumptions the
mixing matrix A must be unitary, which leads to the following constraints,
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3 On-linelearning

The goal of ICA is to find a vector w such that the projection y = wTx — +s. Defining
the overlap R = w™ a, we obtain,

y = wi(a,s+ A.n)

Rs + zy/||w||? — R?> where 2z~ N(0,1), 4)
where we have made use of the constraint in egn. (2). This assumes zero correlation be-
tween w and & which is true for on-line learning but is only strictly true for the first iteration
of batch learning (see section 4). In the algorithm described below we impose a normalisa-

tion constraint on w such that ||w|| = 1. In this case we see that the goal is to find w such
that R — +£1.



A simple Hebbian (or anti-Hebbian) learning rule was studied by Hyvarinen and Oja
(1998), who showed it to have a remarkably simple stability condition. We will consider
the deflationary form in which a single source is learned at one time. The algorithm is
closely related to Projection Pursuit algorithms, which seek interesting projections in high-
dimensional data. A typical criteria for an interesting projection is to find one which is
maximally non-Gaussian in some sense. Maximising some such measure (simple exam-
ples would be skewness or kurtosis) leads to the following simple algorithm (see Hyvérinen
and Oja, 1998, for details). The change in w at time ¢ is given by,

Aw = nop(y')x ; followed by normalisation such that ||w|| = 1. 5)

Here, 7 is the learning rate and ¢(y) is some non-linear function which we will take to be
at least three times differentiable. An even non-linearity, eg. ¢(y) = y2, is appropriate
for detecting asymmetric signals while a more common choice is an odd function, eg.
é(y) = y® or ¢(y) = tanh(y), which can be used to detect symmetric non-Gaussian
signals. In the latter case o € {—1,1} has to be chosen in order to ensure stability of the
correct solution, as described by Hyvérinen and Oja (1998), either adaptively or using &
priori knowledge. We set o = 1 in the case of an even non-linearity. Remarkably, the same
non-linearity can be used to separate both sub and super-Gaussian signals, in contrast to
maximum likelihood methods for which this is typically not the case.

We can write the above algorithm as,

o w' +nog(y’)x! . (6)
V1+2n06(yh)yt +n?¢2(yh)||2t]?

For large N and n < O(N~1) (two different scalings will be considered below) we can
expand out to get a weight decay normalisation,

w ~w +nog(y’) (af —y'w') — g NG (y')w' . 7
Taking the dot-product with a, gives the following update increment for the overlap R,
AR =n0d(y) (s' — R'y") — §*N¢*(y")R' , ®)

where we used the constraint in egn. (3) to set alz = s. Below we calculate the mean
and variance of AR for two different scalings of the learning rate. Because the conditional
distribution for y given s only depends on R (setting ||w|| = 1 in egn. 4) these expressions
will depend only on R and statistics of the non-Gaussian source distribution.

3.1 Dynamicscloseto theinitial conditions

If the entries in a, and w are initially of similar order then one would expect R = O(N ~z).
This is the typical case if we consider arandom and uncorrelated choice for A and the initial
entries in w. Larger initial values of R could only be obtained with some prior knowledge
of the mixing matrix which we will not assume. We will set r = R+/N in the following
discussion, where r is assumed to be an O(1) quantity. The discussion below is therefore
restricted to describing the dynamics close to the initial conditions. For an account of the
transient dynamics far from the initial conditions and the asymptotic dynamics close to an
optimal solution, see Rattray (2002).

311 ¢(y) even, k3 #0

If the signal is asymmetrical then an even non-linearity can be used, for example ¢(y) = y2
is a common choice. In this case the appropriate (ie. maximal) scaling for the learning rate

is O(N~%) and we set ) = I//N% where v is an O(1) scaled learning rate parameter. In



¢(y) even, K3 7é 0 ¢(y) Odd1 KRg 7é 0

AU
AU

T A

Figure 1: Close to the initial conditions (where r = wTa,v/N = O(1)) the learning
dynamics is equivalent to diffusion in a polynomial potential. For asymmetrical source
distributions we can use an even non-linearity in which case the potential is cubic, as shown
on the left. For symmetrical source distributions with non-zero kurtosis we should use
an odd non-linearity in which case the potential is quartic, as shown on the right. The
dynamics is initially confined in a metastable state near » = 0 with a potential barrier AU.

this case we find that the mean and variance of the change in r at each iteration are given
by (to leading order in N—1),

E[Ar] =~ (=g{(¢° ()1 + 5rs(d" () r?) N2, ©)

Var[Ar] = (¢2(2))PN 2, (10)

where k3 is the third cumulant of the source distribution (third central moment), which
measures skewness, and brackets denote averages over z ~ A(0,1). We also find that
E[(Ar)"] = o(N~2) for integer n > 2. In this case the system can be described by a

Fokker-Planck equation for large NV (see, for example, Gardiner, 1985) with a characteristic
timescale of O(N?2). The system is locally equivalent to a diffusion in the following cubic

potential, A A
U(r) = 1{8°(2))v?r? — §ra(d" (2))vr® (11)

with a diffusion coefficient D = (¢2(z))r? which is independent of r. The shape of this
potential is shown on the left of fig. 1. A potential barrier of AU must be overcome to
escape a metastable state close to the initial conditions.

2

3.1.2 $(y) odd, k4 # 0

If the signal is symmetrical, or only weakly asymmetrical, it will be necessary to use an
odd non-linearity, for example ¢(y) = v or ¢(y) = tanh(y) are popular choices. In
this case a lower learning rate is required in order to achieve successful separation. The
appropriate scaling for the learning rate is O(N ~2) and we set = v/N? where again v is
an O(1) scaled learning rate parameter. In this case we find that the mean and variance of
the change in r at each iteration are given by,

E[Ar] (=3(¢*(2))°r + Lka(¢" (2))ovr®) N2, (12)
Var[Ar] =~ (¢*(2)) VN3, (13)

where k4 is the fourth cumulant of the source distribution (measuring kurtosis) and brackets
denote averages over z ~ A(0,1). Again the system can be described by a Fokker-Planck
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equation for large NV but in this case the timescale for learning is O(NN?3), an order of N
slower than in the asymmetrical case. The system is locally equivalent to diffusion in the
following quartic potential,

U(r) = §(6*(2))v°r? = glra(g" (2))lvrt, (14)

with a diffusion coefficient D = (¢?(z))v?. We have assumed o = Sign(x4) which is
a necessary condition for successful learning. In the case of a cubic non-linearity this is
also the condition for stability of the optimal fixed point, although in general these two
conditions may not be equivalent (Rattray, 2002). The shape of this potential is shown
on the right of fig. 1 and again a potential barrier of AU must be overcome to escape a
metastable state close to the initial conditions.

3.1.3 Escapetimesfrom a metastable stateat R = 0

For large v the dynamics of r corresponds to an Ornstein-Uhlenbeck process with a Gaus-
sian stationary distribution of fixed unit variance. Thus, if one chooses too large v initially
the dynamics will become localised close to R = 0 (recall, R = r/+/N). As v is reduced
the potential barrier confining the dynamics is reduced. The timescale for escape for large
v (mean first passage time) is mainly determined by the effective size of the barrier (see,
for example, Gardiner, 1985),

Tesope < (0t) ™' exp (%) , (15)

where AU is the potential barrier, D is the diffusion coefficient and 6t is a unit of time in
the diffusion process. For the two cases considered above we obtain,

T  x NZexp L M i foreven ¢(y), k3 #0, [v=nN
e 12 \ k3(¢"(2)) SRR
3(¢°(2))v ]

8 |ka(e" (2))|
The constants of proportionality depend on the shape of the potential and not on N. As the
learning rate parameter is reduced so the timescale for escape is also reduced. However, the
choice of optimal learning rate is non-trivial and cannot be determined by considering only
the leading order terms in R as above, because although small v will result in a quicker
escape from the unstable fixed point near R = 0, this in turn will lead to a very slow
learning transient after escape. Notice that escape time is shortest when the cumulants x3
or k4 are large, suggesting that deflationary ICA algorithms will tend to find these signals
first.
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TE, o N? exp [ forodd ¢(y), ks #0. [v =nN?](16)

From the above discussion one can draw two important conclusions. Firstly, the initial
learning rate must be less than O(N~1!) initially in order to avoid trapping close to the
initial conditions. Secondly, the number of iterations required to escape the initial transient
will be greater than O(V), resulting in an extremely slow initial stage of learning for large
N. The most extreme case is for symmetric source distributions with non-zero kurtosis, in
which case O(N?) learning iterations are required.

In fig. 2 we show results of learning with an asymmetric source (top) and uniform source
(bottom) for different scaled learning rates. As the learning rate is increased (left to right)
we observe that the dynamics becomes increasingly stochastic, with the potential barrier
becoming increasingly significant (potential maxima are shown as dashed lines). For the
largest value of learning rate (v = 5) the algorithm becomes trapped close to the initial
conditions for the whole simulation time. From the time axis we observe that the learning
timescale is O(NN?) for the asymmetrical signal and O(N?) for the symmetric signal, as
predicted by our theory.
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Figure 2: 100-dimensional data (NV = 100) is produced from a mixture containing a single
non-Gaussian source. In the top row we show results for a binary, asymmetrical source with
skewness k3 = 1.5 and ¢(z) = z2. In the bottom row we show results for a uniformly
distributed source and ¢(z) = x>. Each row shows learning with the same initial conditions
and data but with different scaled learning rates (left to right » = 0.1,1 and 5) where

V= nN% (top) or » = nN'? (bottom). Dashed lines are maxima of the potentials in fig. 1.

4 Batch learning

The batch version of eqn. (5) for sufficiently small learning rates can be written,

P
Aw ~no Y ¢(y) (z' —y'w') 17)
t=1
where P is the number of training examples. Here we argue that such an update requires
at least the same order of examples as in the on-line case, in order to be successful. Less
data will result in a low signal-to-noise ratio initially and the possibility of trapping in a
sub-optimal fixed point close to the initial conditions.

As in the on-line case we can write the update in terms of R,

P
AR ~no Z¢(yt) (s* —y'R") . (18)

t=1
We make an assumption that successful learning is unlikely unless the initial increment in
R is in the desired direction. For example, with an asymmetric signal and quadratic non-
linearity we require k3 AR > 0 initially, while for a symmetric signal and odd non-linearity
we require R AR > 0. We have carried out simulations of batch learning which confirm
that a relatively low percentage of runs in which the intial increment was incorrect result
in successful learning compared to typical performance. As in the on-line case we observe

that runs either succeed, in which case R — +1, or fail badly with R remaining O(N ~2).

As before, R = O(N—%) initially and we can therefore expand the right-hand side of
eqn. (18) in orders of R for large N. AR™ (AR at the first iteration) is a sum over ran-



domly sampled terms, and the central limit theorem states that for large P the distribution
from which AR™ is sampled will be Gaussian, with mean and variance given by (to lead-
ing order in R),

E[AR™] = noP [Lra(d" ()R + bra(d" ()R] | (19
Var [AR™] ~ n’P($*(2)) . (20)
Notice that the x5 term disappears in the case of an asymmetrical non-linearity, which

is why we have left both terms in egn. (19). The algorithm will be likely to fail when
the standard deviation of AR™ is of the same order (or greater) than the mean. Since

R = O(N~1) initially, we see that this is true for P = O(IN'2) in the case of an even non-
linearity and asymmetric signal, or for P = O(IN?) in the case of an odd non-linearity and
a signal with non-zero kurtosis. We expect these results to be necessary but not necessarily
sufficient for successful learning, since we have only shown that this order of examples is
the minimum required to avoid a low signal-to-noise ratio in the first learning iteration. A
complete treatment of the batch learning problem would require much more sophisticated
formulations such as the mean-field theory of Wong et al. (2000).

5 Conclusions and future work

In both the batch and on-line Hebbian ICA algorithm we find that a surprisingly large num-
ber of examples are required to avoid a sub-optimal fixed point close to the initial condi-
tions. We expect simialr scaling laws to apply in the case of small numbers of non-Gaussian
sources. Analysis of the square demixing problem appears to be much more challenging
as in this case there may be no simple macroscopic description of the system for large N.
It is therefore unclear at present whether ICA algorithms based on Maximum-likelihood
and Information-theoretic principles (see, for example, Bell and Sejnowski, 1995; Amari
et al., 1996; Cardoso and Laheld, 1996), which estimate a square demixing matrix, exhibit
similar classes of fixed point to those studied here.
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