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Abstract 

A theory of categorization is presented in which knowledge of 
causal relationships between category features is represented as a 
Bayesian network. Referred to as causal-model theory, this theory 
predicts that objects are classified as category members to the 
extent they are likely to have been produced by a categorys causal 
model. On this view, people have models of the world that lead 
them to expect a certain distribution of features in category 
members (e.g., correlations between feature pairs that are directly 
connected by causal relationships), and consider exemplars good 
category members when they manifest those expectations. These 
expectations include sensitivity to higher-order feature interactions 
that emerge from the asymmetries inherent in causal relationships. 

Research on the topic of categorization has traditionally focused on the problem of 
learning new categories given observations of category members. In contrast, the 
theory-based view of categories emphasizes the influence of the prior theoretical 
knowledge that learners often contribute to their representations of categories [1]. 
However, in contrast to models accounting for the effects of empirical observations, 
there have been few models developed to account for the effects of prior knowledge. 
The purpose of this article is to present a model of categorization referred to as 
causal-model theory or CMT [2, 3]. According to CMT, people 's know ledge of 
many categories includes not only features, but also an explicit representation of the 
causal mechanisms that people believe link the features of many categories. 

In this article I apply CMT to the problem of establishing objects category 
membership. In the psychological literature one standard view of categorization is 
that objects are placed in a category to the extent they have features that have often 
been observed in members of that category. For example, an object that has most of 
the features of birds (e.g., wings, fly, build nests in trees, etc.) and few features of 
other categories is thought to be a bird. This view of categorization is formalized by 
prototype models in which classification is a function of the similarity (i.e. , number 
of shared features) between a mental representation of a category prototype and a 
to-be-classified object. However , a well-known difficulty with prototype models is 
that a features contribution to category membership is independent of the presence 
or absence of other features. In contrast , consideration of a categorys theoretical 
knowledge is likely to influence which combinations of features make for 
acceptable category members. For example , people believe that birds have nests in 
trees because they can fly , and in light of this knowledge an animal that doesnt fly 



and yet still builds nests in trees might be considered a less plausible bird than an 
animal that builds nests on the ground and doesnt fly (e.g., an ostrich) even though 
the latter animal has fewer features typical of birds. 

To assess whether knowledge in fact influences which feature combinations make 
for good category members , in the following experiment undergraduates were taught 
novel categories whose four binary features exhibited either a common-cause or a 
common-effect schema (Figure 1). In the common-cause schema, one category 
feature (PI) is described as causing the three other features (F2, F3, and F4). In the 
common-effect schema one feature (F4) is described as being caused by the three 
others (F I, F2, and F3). CMT assumes that people represent causal knowledge such 
as that in Figure 1 as a kind of Bayesian network [4] in which nodes are variables 
representing binary category features and directed edges are causal relationships 
representing the presence of probabilistic causal mechanisms between features. 
Specifically , CMT assumes that when a cause feature is present it enables the 
operation of a causal mechanism that will, with some probability m , bring about the 
presence of the effect feature. CMT also allow for the possibility that effect features 
have potential background causes that are not explicitly represented in the network, 
as represented by parameter b which is the probability that an effect will be present 
even when its network causes are absent. Finally, each cause node has a parameter c 
that represents the probability that a cause feature will be present. 
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The central prediction of CMT is that an object is considered to be a category 
member to the extent that its features were likely to have been generated by a 
category's causal mechanisms. For example, Table 1 presents the likelihoods that 
the causal models of Figure 1 will generate the sixteen possible combinations of F I, 
F2, F3, and F4. Each likelihood equation can be derived by the application of simple 
Boolean algebra operations. For example, the probability of exemplar 1101 (F I, F2, 
F4 present , F3 absent) being generated by a common-cause model is the probability 
that F I is present [c], times the probability that F2 was brought about by F I or its 
background cause [1- (lmj(l-b)], times the probability that F3 was brought about 
by neither F I nor its background cause [(l-m )(l-b)], times the probability that F 4 
was brought about by F I or its background cause [1- (lmj(l-b)]. Likewise , the 
probability of exemplar 1011 (F I, F3, F 4 present , F2 absent) being generated by a 
common-effect model is the probability that FI and F3 are present [c 2], times the 
probability that F2 is absent [1-£], times the probability that F4 was brought about 
by F I, F3, or its background cause [1- (lmj(l-m )(l-b)] . Note that these likelihoods 
assume that the causal mechanisms in each model operate independently and with 
the same probability m, restrictions that can be relaxed in other applications. 

This formalization of categorization offered by CMT implies that peoples 
theoretical knowledge leads them to expect a certain distribution of features in 
category members , and that they use this information when assigning category 
membership. Thus , to gain insight into the categorization performance predicted by 
CMT, we can examine the statistical properties of category features that one can 



expect to be generated by a causal model. For example , dotted lines in Figure 2 
represent the features correlations that are generated from the causal schemas of 
Figure 1. As one would expect , pairs of features directly linked by causal 
relationships are correlated in the common-cause schema F I is correlated with its 
effects and in the common-effect schema F4 is correlated with its causes. Thus, 
CMT predicts that combinations of features serve as evidence for category 
membership to the extent that they preserve these expected correlations (i.e. , both 
cause and effect present or both absent) , and against category membership to the 
extent that they break those correlations (one present and the other absent). 

Table 1: Likelihoods Equations and Observed and Predicted Values 

Common Cause Schema Common Effect Schema Control 

ExemElar Likelihood Observed Predicted Likelihood Observed Predicted Observed 

0000 e'b ,3 60.0 61.7 e ,3 b , 70.0 69 .3 70 .7 
0001 e 'b ,2 b 44.9 45 .7 e ,3 b 26.3 27 .8 67.0 
0010 e'b ,2 b 46.1 45 .7 ee,2 m 'b ' 43.4 47 .7 65.6 
0100 e 'b ,2 b 42.8 45 .7 ee ,2 m 'b ' 47 .3 47 .7 66.0 
1000 em ,3 b ,3 44.5 44.1 ee,2 m 'b ' 48.0 47 .7 67.0 
0011 e 'b 'b 2 41.0 40.1 ee ,2 (1-m 'b ') 56.3 56.5 67.1 
0101 e'b 'b 2 40.8 40.1 ee,2 (1-m 'b ') 56.5 56.5 66.5 
0110 e 'b 'b 2 42.7 40.1 e2e 'm ,2 b , 38 .3 39 .2 65.6 
1001 em ,2 b ,2 (1- m 'b ') 55.1 52.7 ee,2 (1-m 'b ') 57.7 56.5 68.0 
1010 em ,2 b ,2 (1- m 'b ') 52.6 52 .7 e2e 'm ,2 b , 43 .0 39 .2 67.6 
1100 em ,2 b ,2 (1- m 'b ') 54.3 52 .7 e2e 'm ,2 b , 41.9 39 .2 69 .9 
0111 e 'b 3 39.4 38.1 e2e'(1-m ,2 b ,) 71.0 74.4 67.6 
1011 em 'b '(1-m 'b ,)2 64.2 65 .6 e2e '(1-m ,2 b ,) 75 .7 74.4 67 .2 
1101 em 'b '(1-m 'b ,)2 65 .3 65 .6 e2e'(1-m ,2 b ,) 74.7 74.4 70 .2 
1110 em 'b '(1-m 'b ,)2 62.0 65 .6 e3m ,3 b , 33 .8 35 .8 72 .2 
1111 e (1-m 'b ,)3 90.8 89 .6 e3(1-m ,3 b ,) 91.0 90 .0 75.6 
Note . e'=l- c . m '=l-m . b'=l-b. 

Causal networks not only predict pairwise correlations between directly connected 
features. Figure 2 indicates that as a result of the asymmetries inherent in causal 
relationships there is an important disanalogy between the common-cause and 
common-effect schemas: Although the common-cause schema implies that the three 
effects (F2 , F3 , F4) will be correlated (albeit more weakly than directly connected 
features) , the common-effect schema does not imply that the three causes (F I , F2 , 

F3) will be correlated. This asymmetry between common-cause and common-effect 
schemas has been the focus of considerable investigation in the philosophical and 
psychological literatures [3 , 5]. Use of these schemas in the following experiment 
enables a test of whether categorizers are sensitive the pattern of correlations 
between features directly-connected by causal laws, and also those that arise due to 
the asymmetries inherent in causal relationships shown in Figure 2. Moreover , I will 
show that CMT predicts, and humans exhibit , sensitivity to interactions among 
features of a higher-order than the pairwise interactions shown in Figure 2. 

Method 

Six novel categories were used in which the description of causal relationships 
between features consisted of one sentence indicating the cause and effect feature , 
and then one or two sentences describing the mechanism responsible for the causal 
relationship. For example , one of the novel categories , Lake Victoria Shrimp , was 
described as having four binary features (e.g. , A high quantity of ACh 
neurotransmitter. , Long-lasting flight response. , Accelerated sleep cycle. , etc.) 



and causal relationships among those features (e.g. , "A high quantity of ACh 
neurotransmitter causes a long-lasting flight response. The duration of the electrical 
signal to the muscles is longer because of the excess amount of neurotransmitter. "). 

Participants first studied several computer screens of information about their 
assigned category at their own pace. All participants were first presented with the 
categorys four features. Participants in the common-cause condition were 
additionally instructed on the common-cause causal relationships (F 1-;' F2 , F 1-;' F3 , 

F 1-;' F 4) , and participants in the common-effect condition were instructed on the 
common-effect relationships (F 1-;.F4 , F2-;.F4 , F3-;.F4). When ready , participants 
took a multiple-choice test that tested them on the knowledge they had just studied. 
Participants were required to retake the test until they committed 0 errors. 

Participants then performed a classification task in which they rated on a 0-100 
scale the category membership of 16 exemplars , consisting of all possible objects 
that can be formed from four binary features. For example , those participants 
assigned to learn the Lake Victoria Shrimp category were asked to classify a shrimp 
that possessed "High amounts of the ACh neurotransmitter ," "A normal flight 
response ," "Accelerated sleep cycle ," and "Normal body weight." The order of the 
test exemplars was randomized for each participant. 

One hundred and eight University of Illinois undergraduates received course credit 
for participating in this experiment. They were randomly assigned in equal numbers 
to the three conditions , and to one of the six experimental categories. 

Results 

Categorization ratings for the 16 test exemplars averaged over partIclpants in the 
common-cause , common-effect , and control conditions are presented in Table 1. 
The presence of causal knowledge had a large effect on the ratings. For instance, 
exemplars 0111 and 0001 were given lower ratings in the common-cause and 
common-effect conditions , respectively (39.4 and 26.3) than in the control condition 
(67.6 and 67.0) presumably because in these exemplars correlations are broken 
(effect features are present even though their causes are absent). In contrast , 
exemplar 1111 received a significantly higher rating in the common-cause and 
common-effect conditions than in the control condition (90.8 and 9l.0 vs. 75.6) , 
presumably because in both conditions all correlations are preserved. 

To confirm that causal schemas induced a sensitivity to interactions between 
features, categorization ratings were analyzed by performing a multiple regression 
for each participant. Four predictor variables (f1 , f2, f3 , f4) were coded as -1 if the 
feature was absent , and + 1 if it was present. An additional six predictor variables 
were formed from the multiplicative interaction between pairs of features: f12 , f13 , 
f14 , f24 , f34 , and f23. For those feature pairs connected by a causal relationship the 
two-way interaction terms represent whether the causal relationship is confirmed 
(+ 1, cause and effect both present or both absent) or violated (-1 , one present and 
one absent). Finally , the four three-way interactions (f123 , f124 , f134, and f234) , and 
the single four-way interaction (f1234) were also included as predictors. 

Regression weights averaged over participants are presented in Figure 3 as a 
function of causal schema condition. Figure 3 indicates that the interaction terms 
corresponding to those feature pairs assigned causal relationships had significantly 
positive weights in both the common-cause condition (f12 , f13 , f14) , and the 
common-effect condition (f14 , f24 , f34). That is , as predicted (Figure 2) an exemplar 
was rated a better category member when it preserved expected correlations (cause 
and effect feature either both present or both absent) , and a worse member when it 
broke those correlations (one absent and the other present). 
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In addition, it was shown earlier (Figure 2) that because of their common-cause the 
three effect features in a common-cause schema will be correlated, albeit more 
weakly than directly-linked features. Consistent with this prediction, in this 
condition the three two-way interaction terms between the effect features (f24, f34, 
f23) are greater than those interactions in the control condition. In contrast, the 
common-effect schema does not imply that the three cause features will be 
correlated, and in fact in that condition the interactions between the cause attributes 
(f12, f13, f23) did not differ from those in the control condition (Figure 3). 

Figure 3 also reveals higher-order interactions among features in the common-effect 
condition: Weights on interaction terms f124, f134, f234, and f1234 (- 1.6,2.0 , -2.0, 
and 2.2) were significantly different from those in the control condition. These 
higher-order interactions arose because a common-effect schema requires only one 
cause feature to explain the presence of the common effect. Figures 7b presents 
the logarithm of the ratings in the common-effect condition for those test exemplars 
in which the common effect is present as a function of the number of cause features 
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present. Ratings increased 
more with the introduction 
of the first cause as 
compared to subsequent 
causes. That is, participants 
considered the presence of 
at least one cause 
explaining the presence of 
the common-effect to be 
sufficient grounds to grant 
an exemplar a relatively 
high category membership 
rating in a common-effect 
category. In contrast , 
Figure 7a shows a linear 



increase in (the logarithm of) categorization ratings for those exemplars in which 
the common cause is present as a function of the number of effect features. In the 
presence of the common cause each additional effect produced a constant increment 
to log categorization ratings. 

Finally , Figure 3 also indicates that the simple feature weights differed as a function 
of causal schema. In the common-cause condition, the common-cause (f1) carried 
greater weight than the three effects (f2, f3 , f4). In contrast , in the common-effect 
condition it was the common-effect (f4) that had greater weight than the three 
causes (f1 , f2, f3). That is , causal networks promote the importance of not only 
specific feature combinations , but the importance of individual features as well. 

Model Fitting 

To assess whether CMT accounts for the patterns of classification found in this 
experiment , the causal models of Figure 1 were fitted to the category membership 
ratings of each participant in the common-cause and common-effect conditions, 
respectively. That is , the ratings were predicted from the equation , 

Rating (X) = K ¥ Likelihood (X; c, m, b) 

where Likelihood (X; c, m, b) is the likelihood of exemplar X as a function of c, m , 
and b. The likelihood equations for the common-cause and common-effect models 
shown in Table 1 were used for common-cause and common-effect participants , 
respectively. K is a scaling constant that brings the likelihood into the range 0-100. 
For each participant , the values for parameters K , c, m, and b that minimized the 
squared deviation between the predicted and observed ratings was computed. The 
best fitting values for parameters K , c, m , and b averaged over participants were 
846 , .578 , .214 , and .437 in the common-cause condition , and 876 , .522 , .325 , and 
.280 in the common-effect condition. The predicted ratings for each exemplar are 
presented in Table 1. The significantly positive estimate for m in both conditions 
indicates that participants categorization performance was consistent with them 
assuming the presence of a probabilistic causal mechanisms linking category 
features. Ratings predicted by CMT did not differ from observed ratings according 
to chi-square tests: )(\16)=3.0 for common cause, )(\16)=5.3 for common-effect. 

To demonstrate that CMT predicts participants sensitivity to particular 
combinations of features when categorizing , each participants predicted ratings 
were subjected to the same regressions that were performed on the observed ratings. 
The resulting regression weights averaged over participants are presented in Figure 
3 superimposed on the weights from the observed data. First, Figure 3 indicates that 
CMT reproduces participants sensitivity to agreement between pairs of features 
directly connected by causal relationships (f12 , f13 , f14 in the common-cause 
condition , and f14 , f24 , f34 in the common-effect condition). That is , according to 
both CMT and human participants , category membership ratings increase when 
pairs of features confirm causal laws , and decrease when they violate those laws. 
Second, Figure 3 indicates that CMT accounts for the interactions between the 
effect features in the common-cause condition (f12, f13 , f23) and also for the higher­
order feature interactions in the common-effect condition (f124 , f134, f234 , f1234) , 
indicating that that CMT is also sensitive to the asymmetries inherent in causal 
relationships. The predictions of CMT superimposed on the observed data in Figure 
4 confirm that CMT, like the human participants , requires only one cause feature to 
explain the presence of a common effect (nonlinear increase in ratings in Figure 

4b) whereas CMT predicts a linear increase in log ratings as one adds effect features 
to a common cause (Figure 4a). Finally , CMT also accounts for the larger weight 
given to the common cause and common-effect features (Figure 3). 



Discussion 

The current results support CMTs claims that people have a representation of the 
probabilistic causal mechanisms that link category features, and that they classify by 
evaluating whether an objects combination of features was likely to have been 
generated by those mechanisms. That is , people have models of the world that lead 
them to expect a certain distribution of features in category members , and consider 
exemplars good category members to the extent they manifest those expectations. 

One way this effect manifested itself is in terms of the importance of preserved 
correlations between features directly connected by causal relationships. An 
alternative model that accounts for this particular result assumes that the feature 
space is expanded to include configural cues encoding the confirmation or violation 
of each causal relationship [6]. However , such a model treats causal links as 
symmetric and does not consider interactions among links. As a result , it does not fit 
the common effect data as well as CMT (Figure 4b) , because it is unable to account 
for categorizers sensitivity to the higher-order feature interactions that emerge as a 
result of causal asymmetries in a complex network. 

CMT diverges from traditional models of categorization by emphasizing the 
knowledge people possess as opposed to the examples they observe. Indeed , the 
current experiment differed from many categorization studies in not providing 
examples of category members. As a result , CMT is applicable to the many real­
world categories about which people know far more than they have observed first 
hand (e.g., scientific concepts). Of course, for many other categories people observe 
category members , and the nature of the interactions between knowledge and 
observations is an open question of considerable interest. Using the same materials 
as in the current study, the effects of knowledge and observations have been 
orthogonally manipulated with the finding that observations had little effect on 
classification performance as compared to the theories [7]. Thus , theories may often 
dominate categorization decisions even when observations are available. 
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