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Abstract

In kernel based learning the data is mapped to a kernel feature space of
a dimension that corresponds to the number of training data points. In
practice, however, the data forms a smaller submanifold in feature space,
a fact that has been used e.g. by reduced set techniques for SVMs. We
propose a new mathematical construction that permits to adapt to the in-
trinsic dimension and to find an orthonormal basis of this submanifold.
In doing so, computations get much simpler and more important our
theoretical framework allows to derive elegant kernelized blind source
separation (BSS) algorithms for arbitrary invertible nonlinear mixings.
Experiments demonstrate the good performance and high computational
efficiency of our kTDSEP algorithm for the problem of nonlinear BSS.

1 Introduction

In a widespread area of applications kernel based learning machines, e.g. Support Vector
Machines (e.g. [19, 6]) give excellent solutions. This holds both for problems of supervised
and unsupervised learning (e.g. [3, 16, 12]). The general idea is to map the data xi (i =
1, . . . , T ) into some kernel feature space F by some mapping Φ : <n → F . Performing
a simple linear algorithm in F , then corresponds to a nonlinear algorithm in input space.
Essential ingredients to kernel based learning are (a) VC theory that can provide a relation
between the complexity of the function class in use and the generalization error and (b) the
famous kernel trick

k(x,y) = Φ(x) · Φ(y), (1)
which allows to efficiently compute scalar products. This trick is essential if e.g. F is
an infinite dimensional space. Note that even though F might be infinite dimensional the
subspace where the data lies is maximally T -dimensional. However, the data typically
forms an even smaller subspace in F (cf. also reduced set methods [15]). In this work
we therefore propose a new mathematical construction that allows us to adapt to the in-
trinsic dimension and to provide an orthonormal basis of this submanifold. Furthermore,
this makes computations much simpler and provides the basis for a new set of kernelized
learning algorithms.
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To demonstrate the power of our new framework we will focus on the problem of nonlinear
BSS [2, 18, 9, 10, 20, 11, 13, 14, 7, 17, 8] and provide an elegant kernel based algorithm
for arbitrary invertible nonlinearities. In nonlinear BSS we observe a mixed signal of the
following structure

xt = f(st), (2)

where xt and st are n×1 column vectors and f is a possibly nonlinear function from <n to
<n. In the special case where f is an n×n matrix we retrieve standard linear BSS (e.g. [8, 4]
and references therein). Nonlinear BSS has so far been only applied to industrial pulp data
[8], but a large class of applications where nonlinearities can occur in the mixing process
are conceivable, e.g. in the fields of telecommunications, array processing, biomedical data
analysis (EEG, MEG, EMG, . . .) and acoustic source separation. Most research has so far
centered on post-nonlinear models, i.e.

xt = f(Ast), (3)

where A is a linear mixing matrix and f is a post-nonlinearity that operates componentwise.
Algorithmic solutions of eq.(3) have used e.g. self-organizing maps [13, 10], extensions of
GTM [14], neural networks [2, 11] or ensemble learning [18] to unfold the nonlinearity
f . Also a kernel based method was tried on very simple toy signals; however with some
stability problems [7]. Note, that all existing methods are of high computational cost and
depending on the algorithm are prone to run into local minima. In our contribution to the
general invertable nonlinear BSS case we apply a standard BSS technique [21, 1] (that
relies on temporal correlations) to mapped signals in feature space (cf. section 3). This is
not only mathematically elegant (cf. section 2), but proves to be a remarkably stable and
efficient algorithm with high performance, as we will see in the experiments on nonlinear
mixtures of toy and speech data (cf. section 4). Finally, a conclusion is given in section 5.

2 Theory

An orthonormal basis for a subspace in F

In order to establish a linear problem in feature space that corresponds to some nonlin-
ear problem in input space we need to specify how to map inputs x1, . . . ,xT ∈ <n into
the feature space F and how to handle its possibly high dimensionality. In addition to
the inputs, consider some further points v1, . . . ,vd ∈ <n from the same space, that will
later generate a basis in F . Alternatively, we could use kernel PCA [16]. However, in
this paper we concentrate on a different method. Let us denote the mapped points by
Φx := [Φ(x1) · · ·Φ(xT )] and Φv := [Φ(v1) · · ·Φ(vd)]. We assume that the columns of
Φv constitute a basis of the column space1 of Φx, which we note by

span(Φv) = span(Φx) and rank(Φv) = d. (4)

Moreover, Φv being a basis implies that the matrix Φ>
v

Φv has full rank and its inverse
exists. So, now we can define an orthonormal basis

Ξ := Φv(Φ>

v
Φv)−

1

2 (5)

the column space of which is identical to the column space of Φv. Consequently this basis
Ξ enables us to parameterize all vectors that lie in the column space of Φx by some vectors
in <d. For instance for vectors

∑T

i=1
αΦiΦ(xi), which we write more compactly as ΦxαΦ,

and ΦxβΦ in the column space of Φx with αΦ and βΦ in <T there exist αΞ and βΞ in <d

such that ΦxαΦ = ΞαΞ and ΦxβΦ = ΞβΞ. The orthonormality implies

α>

Φ
Φ>

x
ΦxβΦ = α>

Ξ
Ξ>ΞβΞ = α>

Ξ
βΞ (6)
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Figure 1: Input data are mapped to some submanifold of F which is in the span of some d-
dimensional orthonormal basis Ξ. Therefore these mapped points can be parametrized in <

d. The
linear directions in parameter space correspond to nonlinear directions in input space.

which states the remarkable property that the dot product of two linear combinations of the
columns of Φx in F coincides with the dot product in <d. By construction of Ξ (cf. eq.(5))
the column space of Φx is naturally isomorphic (as vector spaces) to <d. Moreover, this
isomorphism is compatible with the two involved dot products as was shown in eq.(6). This
implies that all properties regarding angles and lengths can be taken back and forth between
the column space of Φx and <d. The space that is spanned by Ξ is called parameter space.
Figure 1 pictures our intuition: Usually kernel methods parameterize the column space of
Φx in terms of the mapped patterns {Φ(xi)} which effectively corresponds to vectors in
<T . The orthonormal basis from eq.(5), however enables us to work in <d i.e. in the span
of Ξ, which is extremely valuable since d depends solely on the kernel function and the
dimensionality of the input space. So d is independent of T .

Mapping inputs

Having established the machinery above, we will now show how to map the input data to
the right space. The expressions

(Φ>

v
Φv)ij = Φ(vi)

>Φ(vj) = k(vi,vj) with i, j = 1 . . . d

are the entries of a real valued d × d matrix Φ>

v
Φv that can be effectively calculated using

the kernel trick and by construction of v1, . . . ,vd, it has full rank and is thus invertible.
Similarly we get

(Φ>

v
Φx)ij = Φ(vi)

>Φ(xj) = k(vi,xj) with i = 1 . . . d, j = 1 . . . T ,

which are the entries of the real valued d × T matrix Φ>
v

Φx. Using both matrices we
compute finally the parameter matrix

Ψx := Ξ>Φx = (Φ>

v
Φv)−

1

2 Φ>

v
Φx (7)

1The column space of Φx is the space that is spanned by the column vectors of Φx, written
span(Φx).



which is also a real valued d × T matrix; note that (Φ>

v
Φv)−

1

2 is symmetric. Regarding
computational costs, we have to evaluate the kernel function O(d2) + O(dT ) times and
eq.(7) requires O(d3) multiplications; again note that d is much smaller than T . Further-
more storage requirements are cheaper as we do not have to hold the full T × T kernel
matrix but only a d × T matrix. Also, kernel based algorithms often require centering in
F , which in our setting is equivalent to centering in <d. Fortunately the latter can be done
quite cheaply.

Choosing vectors for the basis in F

So far we have assumed to have points v1, . . . ,vd that fulfill eq.(4) and we presented
the beneficial properties of our construction. In fact, v1, . . . ,vd are roughly analogous
to a reduced set in the support vector world [15]. Note however that often we can only
approximately fulfill eq.(4), i.e.

span(Φv) ≈ span(Φx). (8)

In this case we strive for points that provide the best approximation.

Obviously d is finite since it is bounded by T , the number of inputs, and by the dimension-
ality of the feature space. Before formulating the algorithm we define the function rk(n)
for numbers n by the following process: randomly pick n points v1, . . . ,vn from the inputs
and compute the rank of the corresponding n × n matrix Φ>

v
Φv. Repeating this random

sampling process several times (e.g. 100 times) stabilizes this process in practice. Then we
denote by rk(n) the largest achieved rank; note that rk(n) ≤ n. Using this definition we
can formulate a recipe to find d (the dimension of the subspace of F): (1) start with a large
d with rk(d) < d. (2) Decrement d by one as long as rk(d) < d holds. As soon as we
have rk(d) = d we found the d. Choose v1, . . . ,vd as the vectors that achieve rank d. As
an alternative to random sampling we have also employed k-means clustering with similar
results.

3 Nonlinear blind source separation

To demonstrate the use of the orthonormal basis in F , we formulate a new nonlinear BSS
algorithm based on TDSEP [21]. We start from a set of points v1, . . . ,vd, that are provided
by the algorithm from the last section such that eq.(4) holds. Next, we use eq.(7) to compute

Ψx[t] := Ξ>Φ(x[t]) = (Φ>

v
Φv)−

1

2 Φ>

v
Φ(x[t]) ∈ <d.

Hereby we have transformed the time signals x[t] from input space to parameter space sig-
nals Ψx[t] (cf. Fig.1). Now we apply the usual TDSEP ([21]) that relies on simultaneous
diagonalisation techniques [5] to perform linear blind source separation on Ψx[t] to obtain
d linear directions of separated nonlinear components in input space. This new algorithm is
denoted as kTDSEP (kernel TDSEP); in short, kTDSEP is TDSEP on the parameter space
defined in Fig.1. A key to the success of our algorithm are the time correlations exploited
by TDSEP; intuitively they provide the ‘glue’ that yields the coherence for the separated
signals. Note that for a linear kernel functions the new algorithm performs linear BSS.
Therefore linear BSS can be seen as a special case of our algorithm.
Note that common kernel based algorithms which do not use the d-dimensional orthonor-
mal basis will run into computational problems. They need to hold and compute with a
kernel matrix that is T × T instead of d × T with T � d in BSS problems. A further
problem is that manipulating such a T × T matrix can easily become unstable. Moreover
BSS methods typically become unfeasible for separation problems of dimension T .
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Figure 2: Scatterplot of x1 vs x2 for nonlinear mixing and demixing (upper left and right) and linear
demixing and true source signals (lower left and right). Note, that the nonlinear unmixing agrees very
nicely with the scatterplot of the true source signal.

4 Experiments

In the first experiment the source signals s[t] = [s1[t] s2[t]]
> are a sinusoidal and a saw-

tooth signal with 2000 samples each. The nonlinearly mixed signals are defined as (cf. Fig.2
upper left panel)

x1[t] = exp(s1[t]) − exp(s2[t])

x2[t] = exp(−s1[t]) + exp(−s2[t]).

A dimension d = 22 of the manifold in feature space was obtained by kTDSEP using
a polynomial kernel k(x,y) = (x>y + 1)6 by sampling from the inputs. The basis-
generating vectors v1, . . . ,v22 are shown as big dots in the upper left panel of Figure
2. Applying TDSEP to the 22 dimensional mapped signals Ψx[t] we get 22 components
in parameter space. A scatter plot with the two components that best match the source
signals are shown in the right upper panel of Figure 2. The left lower panel also shows for
comparison the two components that we obtained by applying linear TDSEP directly to the
mixed signals x[t]. The plots clearly indicate that kTDSEP has unfolded the nonlinearity
successfully while the linear demixing algorithm failed.

In a second experiment two speech signals (with 20000 samples, sampling rate 8 kHz) that
are nonlinearly mixed by

x1[t] = s1[t] + s3

2[t]

x2[t] = s3

1
[t] + tanh(s2[t]).

This time we used a Gaussian RBF kernel k(x,y) = exp(−|x − y|2). kTDSEP identified
d = 41 and used k-means clustering to obtain v1, . . . ,v41. These points are marked as
’+’ in the left panel of figure 4. An application of TDSEP to the 41 dimensional parameter



mixture kTDSEP TDSEP
x1 x2 u1 u2 u1 u2

s1 0.56 0.72 0.89 0.07 0.09 0.72
s2 0.63 0.46 0.04 0.86 0.31 0.55

Table 3: Correlation coefficients for the signals shown in Fig.4.

space yields nonlinear components whose projections to the input space are depicted in the
right lower panel. We can see that linear TDSEP (right middle panel) failed and that the
directions of best matching kTDSEP components closely resemble the sources.

To confirm this visual impression we calculated the correlation coefficients of the kTDSEP
and TDSEP solution to the source signals (cf. table 3). Clearly, kTDSEP outperforms the
linear TDSEP algorithm, which is of course what one expects.

5 Conclusion

Our work has two main contributions. First, we propose a new formulation in the field of
kernel based learning methods that allows to construct an orthonormal basis of the subspace
of kernel feature space F where the data lies. This technique establishes a highly useful
(scalar product preserving) isomorphism between the image of the data points in F and a
d-dimensional space <d. Several interesting things follow: we can construct a new set of
efficient kernel-based algorithms e.g. a new and eventually more stable variant of kernel
PCA [16]. Moreover, we can acquire knowledge about the intrinsic dimension of the data
manifold in F from the learning process.
Second, using our new formulation we tackle the problem of nonlinear BSS from the view-
point of kernel based learning. The proposed kTDSEP algorithm allows to unmix arbitrary
invertible nonlinear mixtures with low computational costs. Note, that the important ingre-
dients are the temporal correlations of the source signals used by TDSEP. Experiments on
toy and speech signals underline that an elegant solution has been found to a challenging
problem.
Applications where nonlinearly mixed signals can occur, are found e.g. in the fields of
telecommunications, array processing, biomedical data analysis (EEG, MEG, EMG, . . .)
and acoustic source separation. In fact, our algorithm would allow to provide a software-
based correction of sensors that have a nonlinear characteristics e.g. due to manufacturing
errors. Clearly kTDSEP is only one algorithm that can perform nonlinear BSS; kernelizing
other ICA algorithms can be done following our reasoning.
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Figure 4: A highly nonlinear mixture of two speech signals: Scatterplot of x1 vs x2 and the waveforms of the true source signals (upper panel) in comparison to the
best matching linear and nonlinear separation results are shown in the middle and lower panel, respectively.
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