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Abstract

This paper describes a clustering algorithm for vector quantizers using a
“stochastic association model”. It offers a new simple and powerful soft-
max adaptation rule. The adaptation process is the same as the on-line
K-means clustering method except for adding random fluctuation in the
distortion error evaluation process. Simulation results demonstrate that
the new algorithm can achieve efficient adaptation as high as the “neural
gas” algorithm, which is reported as one of the most efficient clustering
methods. It is a key to add uncorrelated random fluctuation in the simi-
larity evaluation process for each reference vector. For hardware imple-
mentation of this process, we propose a nanostructure, whose operation
is described by a single-electron circuit. It positively uses fluctuation in
guantum mechanical tunneling processes.

1 Introduction

Vector quantization (VQ) techniques are used in a wide range of applications, including
speech and image processing, data compression. VQ techniques encode a data manifold
V C RP using only a finite set of reference vectors w = (wy,---,wy). A datavectorv €
V is represented by the best-matching or “winning” reference vector w., which minimizes
the average distortion error:

E= / o — wlPp(v)d v, )

where p(v) is the probability distribution of data vectors over manifold V.

Various clustering algorithms to obtain the best reference vectors have been reported. Here,
we treat on-line training, in which the data point distribution is not given a priori, but instead
a stochastic sequence of incoming sample data points drives the adaptation procedure.

The straightforward approach is the well-known on-line K-means clustering algorithm, in
which only the nearest reference vector to the sample vector is adjusted,;
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where, ¢ is the step size and d;; is the Kronecker delta. However, this simple clustering
algorithm is often stuck in a local minimum. To avoid this difficulty, a common approach
is to introduce a “soft-max” adaptation rule that not only adjusts the “winning” reference
vector but affects other reference vectors depending on their proximity to v.

The maximum-entropy (ME) algorithm [1] adjusts all reference vectors w; depending on
the Euclidean distance to v;
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where parameter 3 defines the proximity.
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The Kohonen's self-organi zation map (SOM) algorithm [2] is another well-known model;
Aw; =¢-he(i,c) - (v(t) —w;). 4)

In this model, every reference vector is assigned to a site of a lattice. Each time a sample
vector is presented, not only the “winning” reference vector is adjusted but also the refer-
ence vectors assigned to the lattice sites adjacent to the winner are updated according to
function h, (4, ¢), which is typically chosen to be a Gaussian:

ho(i,c) = e*llwrwclf/(%Q), (5)
where ¢ is a parameter that defines the proximity.

The neural-gas (NG) clustering algorithm [3] is a powerful soft-max adaptation rule, in
which all reference vectors are adjusted depending on the “neighborhood ranking”;

Aw; = g - hy(ki(v, w)) - (v(t) — wy), (6)

where k;(v,w) is the ranking, which depends on v and the whole set w. The function
ha(k;) is typically as follows:

ha(k) = e/, )
where parameter \ defines the proximity. This algorithm exhibits faster convergence to
smaller distortion errors, however consumes higher computational power especially for
sorting. An efficient version of the NG clustering that adjusts only several reference vectors
having upper ranking was also proposed [4].

In the next section, we propose a new efficient soft-max adaptation algorithm. It em-
ploys the stochastic association model that we have proposed related to single-electron
circuits [5], [6]. In Sec. 3, it is demonstrated from simulation results that this new cluster-
ing algorithm is as powerful as the other algorithms. In Sec. 4, we propose a nanostructure
based on a single-electron circuit for implementing the stochastic association model.

2 Stochastic association algorithm

A usual associative memory is defined as a system that deterministically extracts the vector
most similar to the input vector from the stored reference vectors. This just corresponds to
the process choosing the winning reference vector for a certain data vector in all conven-
tional clustering algorithms.

In our stochastic association (SA) model, the association probability depends on the simi-
larity between the input and the reference vectors. The SA algorithm extracts not only the
reference vector most similar to the input but also other similar reference vectors with the
probability depending on the similarity.

In the SA algorithm, stochastic fluctuation is added in the evaluation process of distortion
error D; between data vector v and reference vector w;. We propose this algorithm inspired
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Figure 1: Probability distribution in evaluation of the distortion error between the data
vector and each reference vector.

by the quantum mechanical property of single-electron circuits as described in Sec. 4, and
we expect that such fluctuation helps to avoid getting stuck in local minima of E.

The distortion error D; can be the squared Euclidean distance ||v — w;]|? or the Manhattan
distance ||v — w;||. The evaluation result is represented by

where £ is a random variable with probability distribution function ¢(&). Therefore, the
evaluation result R; is also considered as a random variable. The probability that R; has
value r; is represented by

PI‘{Rz = ri} = (p(T’i - Dz) (9)
The winning reference vector w,. is determined by
¢ = arg min{R;}. (10)

The probability that reference vector w,, becomes the winner when R,, has value r,, for a
certain data vector is given by the product of ¢(r,, — D,,) and the probability that R; >
rn, Vi # n as shown in Fig. 1. Therefore, the probability that w,, becomes the winner is
given by integrating it with r,;

Pr{c = n} = /Oo dT‘n(,O(Tn - Dn) H Az(rn) (11)
—o0 i#n

Al(r,) = / o(r — D;)dr. (12)

n

If the winning reference vector is updated as expressed by eq. (2), the SA model can provide
a new soft-max adaptation rule. Figure 2 shows an architecture for clustering processing
using the SA model. The distortion error between the input vector and each stored refer-
ence vector is evaluated in parallel with stochastic fluctuation. The winner-take-all circuit
deterministically extracts the winner, and the winning reference vector is only updated with
a constant value. As in the K-means algorithm, only one reference vector is adjusted for
each adaptation step and the update value for the selected reference vector is independent of
similarity or proximity. However, unlike the K-means algorithm, the adjusted vector is not
always the most similar reference vector, and sometimes other similar vectors are adjusted.
The total adjusting tendency in the SA algorithm seems similar to the NG or ME algorithm
because the probability of reference vector selection is determined by the neighborhood
ranking and the distances between each reference vector and a given data vector.
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Figure 2: Architecture for clustering processing using the SA model.
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Figure 3: Test problem and clustering results by SA and ME algorithms. Data samples uni-
formly distribute in square regions, and points represent reference vectors. Both algorithms
use the same initial state.

3 Simulation results

In order to test the performance of the SA algorithm in minimizing the distortion error and
to compare it with the other soft-max approaches, we performed the same simulation of
model clustering described by Ref. [3]. The data clusters are of square shape within a two-
dimensional input space as shown in Fig. 3. In the simulation, the number of clusters was
15, and that of reference vectors was 60. We averaged the results of 50 simulation runs for
each of which not only the initialization of the reference vectors were chosen randomly but
also the 15 clusters were placed randomly.

The SA algorithm in this simulation used the squared Euclidean distance as a distortion
error D; and the normal distribution as the probability distribution of the stochastic fluctu-
ation;
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Figure 4: Clustering performance of SA algorithm comparing with other clustering meth-
ods. The optimized parameters used in the simulation are also shown.

Figure 3 shows an example of clustering by the SA algorithm compared with that by the
ME algorithm. The result of the SA algorithm demonstrates nearly perfect clustering for
tmaz = 50000. In contrast, the clustering result by the ME algorithm is not so good
although the parameters used were optimized.

Here, all the clustering algorithms including the SA algorithm use an annealing procedure
to escape local minima. The parameters were gradually reduced during adaptation:

o(t) = zi(zy @)/t for 8,0, X, 7,€ (14)

where t,,4, IS the total number of adaptation steps. The values optimized by numerous
preliminary simulations are shown in Fig. 4, which were used in the simulation described
here.

In order to compare the performance of the algorithms, we used a performance measure
a = [E(tmaez) — Eol/Eo, where Eq is the minimal distortion error in this problem. The
relationships between t,,,., and « for the four algorithms are shown in Fig. 4. The cluster-
ing performance of the SA algorithm is nearly equal to that of the NG algorithm, which is
the most efficient clustering method in this test problem. The number of adaptation steps
to reach the steady state and the distortion error at the steady state in the SA algorithm are
nearly the same as those in the NG algorithm.

We also performed other simulations, one of which was vector quantization of a real image
(‘Lena’, 256 x 256 pixels, 8-bit grayscale). In this case, the SOM demonstrated the best
performance, and the SA algorithm also had the nearly equal performance.

Consequently, comparing with the other soft-max algorithms, the SA algorithm has nearly
the best clustering performance. Moreover, it does not require a sorting process unlike the
NG algorithm nor a searching process of adjacent lattice sites unlike the SOM; only one
reference vector is adjusted per adaptation step. Thus, the computational power required
by the SA algorithm is much less than that required by the other soft-max algorithm. If the
number of reference vectors is IV, the total updating steps of reference vectors in the SA
algorithm are 1/ times as many as those in the other algorithms. Thus, the SA algorithm
is the most efficient clustering method.
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Figure 5: Nanostructure evaluating Hamming distance. (a) Schematic of nanostructure,
where dot arrays are extremely enlarged compared with a MOSFET to emphasize the dot
structures. (b) Single-electron circuit. (c) Potential profile in dot array Ay. (d) ear moving
time for bit comparator operation.

4 Nanostructureimplementing SA model

The key for implementing the SA model is adding random fluctuation as expressed by
eg. (8). We have already proposed single-electron circuits and nanostructures evaluating
Hamming distance for the SA model [5]-[9].

Figure 5(a) and (b) show a nanostructure and the corresponding single-electron circuit, re-
spectively, which are the most sophisticated version of our circuits and structures [9]. The
nanostructure consists of plural (A1) dot structures arranged on a MOS transistor gate elec-
trode. Each dot structure consists of 1-D dot arrays Ay (D1, -+, Dy, D¢, Dy, - -+, D) and
Ay (Dy1,Dys, Dy3), where n means the number of dots at a side of A;,. (From Monte
Carlo single-electron circuit simulation, n should be more than 3). The dot diameter as-
sumed is around 1 nm. The capacitance C, corresponds to the gate capacitance of an
ultrasmall MOS transistor. An electron ey is introduced in array Ay, which is for example
performed by using Fowler-Nordheim tunneling from the grounded plate over D... Electron
e, Which is initially located at D., can move along array A;, through tunneling junctions
C}, but it cannot move to A, through the normal capacitor C,. Digital (High/Low) volt-
ages Vg; and V,; (¢ = 1,2,---, M) are applied at both edges of A, which correspond to
elements of data and reference vectors, respectively. Each dot structure simply works as an
exclusive-NOR logic gate (bit comparator) with random fluctuation as explained below.

If the two digital data bits (H or L) are matched, electron ey, stabilizes at center dot D.,
otherwise e s moves to an off-center position. After stabilizing e, by changing voltages



Vai, Vi and back-gate voltage V3,4, vertical dot array A, detects whether e stays at D, or
not; only if e, stays at D., A, is polarized and an electron is induced at the gate electrode
of C,. The total number of induced electrons (IV.) is proportional to the number of dot
structures with matched bits; thus the Hamming distance can be measured by counting the
induced electrons using the ultrasmall MOS transistor. (If one of the input digital data is
applied through an inverter, the number of unmatched bits can be calculated).

The detail of operation stabilizing e is as follows: Because of the charging energy of e,
itself, the total energy as a function of the position of es in array Ay, has two peaks at the
midpoints of each side of the array, and has minimal values at D and both of D, as shown
in Fig. 5(c). The energy barrier height for eps at D, is assumed larger than the thermal
energy at room temperature.

In L-L state, the energy at D rises up, thus ey, is most strongly stabilized at D.. On
the other hand, in H-L(L-H) or H-H state, the energy barrier is lower than that of L-L
state, thus ear can more easily overcome the barrier by using thermal noise. Figure 5(d)
shows the relation between operation temperature and time (¢,) required until e;; moves
to Dy, which was obtained by Monte Carlo single-electron circuit simulation. The moving
process assisted by thermal noise is purely stochastic, thus ¢, scatters in a wide range.
However, because the energy barrier height in H-L(L-H) states is lower than that in H-H
state as shown in Fig. 5(c), there exists a certain time span ¢, within which ez in H-L(L-H)
states moves to D, while ey in H-H state stays at D.. At room temperature (300K), ¢g is
several microseconds in this case although ¢, depends on the tunneling resistance. If the
detection process starts after ¢g, nearly perfect exclusive-NOR (bit comparison) operation
is achieved. On the other hand, if the start timing is shifted from ¢, arbitrary amount of
fluctuation can be included in the bit comparison result. Thus, we utilize quantum mechan-
ical tunneling processes assisted by thermal noise in this structure, which is similar to a
phenomenon known as stochastic resonance.

Although digital data are treated in the above explanation, analog data can be treated in the
same circuit by using pulse-width modulation (PWM) signals, which have a digital am-
plitude and an analog pulse width [10]. Therefore, instead of the Hamming distance, the
Manhattan distance can be evaluated by using this nanostructure. Because random fluctu-
ation is naturally added in our nanostructure, it can implement the calculation expressed
by eq. (8). The annealing procedure described by egs. (13) and (14) can be performed by
changing the time scale in the stabilization operation; that means the scaling of pulse-width
modulation.

The proposed nanostructure has not yet been fabricated using the present VLSI technology,
but the basic technology related to nanocrystalline floating-dot MOSFET devices, which
are closely related to our structure, is now being developed [11]-[13]. Furthermore, well-
controlled self-assembly processes using molecular manipulation technology, especially
using DNA [14], would be utilized to fabricate our nanostructure. Thus, it could be con-
structed in the near future.

5 Conclusions

The stochastic association algorithm offers a simple and powerful soft-max adaptation rule
for vector quantizers. Although it is the same as the simple on-line K-means clustering
method except for adding random fluctuation in the distortion error evaluation process, our
new method has an efficient adaptation performance as high as the neural-gas (NG) or the
SOM algorithms. Moreover, our method needs no additional process such as sorting and
only one reference vector is adjusted at each adaptation step; thus the computational effort
is much smaller compared with the conventional soft-max clustering algorithms.



By employing the nanostructure proposed in this paper, very high performance clustering
hardware could be constructed.
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