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Abstract 

It has been known that people, after being exposed to sentences 
generated by an artificial grammar, acquire implicit grammatical 
knowledge and are able to transfer the knowledge to inputs that are 
generated by a modified grammar. We show that a second order 
recurrent neural network is able to transfer grammatical knowledge 
from one language (generated by a Finite State Machine) to another 
language which differ both in vocabularies and syntax. Representa­
tion of the grammatical knowledge in the network is analyzed using 
linear discriminant analysis. 

1 Introduction 

In the field of artificial grammar learning, people are known to be able to transfer 
grammatical knowledge to a new language which consists of a new vocabulary [6]. 
Furthermore, this effect persists even when the new strings violate the syntactic 
rule slightly as long as they are similar to the old strings [1]. It has been shown in 
the past studies that recurrent neural networks also have the ability to generalize 
previously acquired knowledge to novel inputs. For instance, Dienes et al. ([2]) 
showed that a neural network can generalize abstract knowledge acquired in one 
domain to a new domain. They trained the network to predict the next input 
symbol in grammatical sequences in the first domain, and showed that the network 
was able to learn to predict grammatical sequences in the second domain more 
effectively than it would have learned them without the prior learning. During 
the training in the second domain, they had to freeze the weights of a part of the 
network to prevent catastrophic forgetting. They used this simulation paradigm to 
emulate and analyze domain transfer, effect of similarity between training and test 
sequences, and the effect of n-gram information in human data. Hanson et al. ([5]) 
also showed that a prior learning of a grammar facilitates the learning of a new 
grammar in the cases where either the syntax or the vocabulary was kept constant. 

In this study we investigate grammar transfer by a neural network, where both syn­
tax and vocabularies are different from the source grammar to the target grammar. 
Unlike Dienes et al.'s network, all weights in the network are allowed to change dur-



ing the learning of the target grammar, which allows us to investigate interference 
as well as transfer from the source grammar to the target grammar. 

2 Simulation Design 

2.1 The Grammar Transfer Task 

In the following simulations, a neural network is trained with sentences that are 
generated by a Finite State Machine (FSM) and is tested whether the learning of 
sentences generated by another FSM is facilitated. Four pairs of FSMs used for the 
grammar transfer task are shown in Fig. 2. In each FSM diagram, symbols (e.g. A, 
B, C, ... ) denote words, numbers represent states, a state number with an incoming 
arrow with no state numbers at the arrow foot (e.g. state 1 in the left FSM in 
Fig. 2A) signifies the initial state, and numbers in circles (e.g. state 3 in the left 
FSM in Fig. 2A) signify the accepting states. In each pair of diagrams, transfer 
was tested in both directions: from the left FSM to the right FSM, and to the 
opposite direction. Words in a sentence are generated by an FSM and presented to 
the network one word at a time. At each time, the next word is selected randomly 
from next possible words (or end of sentence where possible) at the current FSM 
state with the equal probability, and the FSM state is updated to the next state. 
The sentence length is limited to 20 words, excluding START. 

The task for the network is to predict the correct termination of sentences. If the 
network is to predict that the sentence ends with the current input, the activity 
of the output node of the network has to be above a threshold value, otherwise 
the output has to be below another threshold value. Note that if a FSM is at 
an accepting state but can further transit to another state, the sentence mayor 
may not end. Therefore, the prediction may succeed or fail. However, the network 
will eventually learn to yield higher values when the FSM is at an accepting state 
than when it is not. After the network learns each training sentence, it is tested 
with randomly generated 1000 sentences and the training session is completed only 
when the network makes correct end point judgments for all sentences. Then the 
network is trained with sentences generated by another FSM. The extent of transfer 
is measured by the reduction of the number of sentences required to train the 
network on an FSM after a prior learning of another FSM, compared to the number 
of sentences required to train the network on the current FSM from scratch. 

2.2 The Network Architecture and the Learning Algorithm 

The network is a second order recurrent neural network, with an added hidden layer 
that receives first order connections from the input layer (Fig. 1). The network has 
an input layer with seven nodes (A, B, C, ... F, and START), an output layer 
with one node, an input hidden layer with four nodes, a state hidden layer with 
four nodes, and a feedback layer with four nodes. Recurrent neural networks are 
often used for modeling syntactic processing [3]. Second order networks are suited 
for processing languages generated by FSMs [4] . Learning is carried out by the 
weight update rule for recurrent networks developed by Williams and Zipser ([7]), 
extended to second order connections ([4]) where necessary. The learning rate and 
the momentum are 0.2 and 0.8, respectively. High and low thresholds are initialized 
to 0.20 and 0.17 respectively and are adapted after the network have processed the 
test sentences as follows. The high threshold is modified to the minimum value 
yielded for all end points in the test sentences minus a margin (0.01). The low 
threshold is modified to the high threshold minus another margin (0.02). These 
thresholds are used in the next training and test. 
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Figure 1: A second order recurrent network used in simulations. The network 
consists of an input layer that receives words, an output layer that predicts sentence 
ends, two hidden layers (an input hidden layer and a state hidden layer) , and a 
feedback layer that receives a copy of the state hidden layer activities. 

3 The Simulation Results 

3.1 The Transfer Effects 

Numbers of required trainings and changes in number of trainings averaged over 20 
networks with different initial weights are shown in Fig. 2. Numbers in parentheses 
are standard errors of number of trainings. Changes are shown with either a "+" 
sign (increase) or a "-" sign (reduction). For instance, Fig. 2A shows that it 
required 14559 sentence presentations for the network to learn the left FSM after the 
network was trained on the right FSM. On the other hand, it required 20995 sentence 
presentation for the network to learn the left FSM from the scratch. Therefore 
there was 30.7% reduction in the transfer direction from right to left. Note that 
the network was trained only once on sentences from the source grammar to the 
criteria and then only once on the sentences from the target grammar. Thus after 
the completion of the target grammar learning, the knowledge about the source 
grammar is disrupted to some extent. To show that the network eventually learns 
both grammars , number of required training was examined for more than one cycle. 
After ten cycles, number of required trainings was reduced to 0.13% (not shown). 

3.2 Representation of Grammatical Knowledge 

To analyze the representation of grammatical knowledge in the network, Linear 
Discriminant Analysis (LDA) was applied to hidden layer activities. LDA is a 
technique which finds sets of coefficients that defines a linear combination of input 
variables that can be used to discriminate among sets of input data that belong 
to different categories . Linear combinations of hidden layer node activities using 
these coefficients provide low-dimensional views of hidden layer activities that best 
separate specified categories (e.g. grammatical functions). In this respect, LDA is 
similar to Principal Component Analysis (PCA) except that PCA finds dimensions 
along which the data have large variances, whereas LDA finds dimensions which 
differentiate the specified categories. 
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Figure 2: Initial savings observed in various grammar transfer tasks. Numbers are 
required number of training averaged over 20 networks with different initial weights. 
Numbers in parentheses are standard errors. Numbers shown with "%" are change 
in number of training due to transfer. A negative change means reduction (positive 
transfer) and a positive change means increase (negative transfer, or interference). 
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Figure 3: State space organization for a grammar transfer task (a case of Fig_ 2B)_ 
State space activities corresponding to FSM states 1, 2, and 3 are plotted with 
squares, diamonds, and circles, respectively_ State space activities that belong to 
the target FSM have dots in the plots, whereas those that belong to the source FSM 
do not have fill in patterns_ 
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Figure 4: Trajectories corresponding to loops in Fig_ 2B in the state hidden layer 
state space_ The broken line corresponds to a hypothetical shared discrimination 
cue a hypothetical boundary described in 4_ It is the between white diamonds and 
white circles (i. e. states 2 and 3 in the source grammar), as well as it can be one of 
the discrimination boundaries between diamonds with dots and squares with dots 
(i . e. states 2 and 1 in the target grammar). The triangular shape shows the three 
FSM state trajectory corresponding to inputs BCCBCC .... Ellipses show to state 
space activities involved in one state loops (at state 1 and at state 3) and two state 
loops (at state 2 and 3). 



4 Discussion 

In the first grammar transfer task (Fig. 2A) , only the initial and the accepting 
states in the FSMs were different, so the frequency distribution of subsequences 
of words were very similar except for short sentences. In this case, 31 % saving 
was observed in one transfer direction although there was little change in required 
training in the other direction. In the second grammar transfer task, directions of all 
arcs in the FSMs were reversed. Therefore the mirror images of sentences accepted 
in one grammar were accepted in the other grammar. Although the grammars 
were very different, there were significant amount of overlaps in the permissible 
short subsequences. In this case, there were 31% and 41 % savings in training. In 
the third and fourth grammar transfer tasks, the source and the target grammars 
shared less subsequences. In the third case (Fig. 2C) for instance, the subsequences 
were very different because the source grammar had two one-state loops (at states 
1 and 3) with the same word A, whereas two one-state loops in the target grammar 
consisted of different words (D and E). In this case, there was little change in the 
number of learnings required in one transfer direction but there was 67% increase 
in the other direction. In the fourth case (Fig 2. D), there was 26% reduction in 
one direction but there was 12% increase in the other direction in the number of 
learnings required. From these observations we hypothesize that , as in the case 
of syntax transfer ([5]) , if the acquired grammar allows frequent subsequence of 
words that appears in the target grammar (after the equivalent symbol sets are 
substituted) the transfer is easier and thus there are more savings. 

What is the source of savings in grammar transfer? It is tempting to say that, as 
in the vocabulary transfer task ([5]), the source of savings is the organization of the 
state hidden layer activity which directly reflects the FSM states. Fig. 3 shows the 
state space organization after the grammar transfer shown in Fig. 2B. Fig. 4 shows 
the change in the state hidden layer activities drawn over the state space organi­
zation. The triangular lines are the trajectories as the network receives BCCBCC, 
which creates the 3-state loops (231)(231) in the FSM. Regions of trajectories cor­
responding to the 2-state loop (23) and two I-state loops (1) and (3) are also shown 
in Fig. 4, although the trajectory lines are not shown to avoid a cluttered figure. 
It can be seen that state space activities that belong to different FSM state loops 
tend to be distinct even when they belong to the same FSM state, although there 
seem to be some tendencies that they are allocated in vicinities. Unlike in the vo­
cabulary transfer, regions belonging to different FSM loops tend to be interspersed 
by regions that belong to the other grammar, causing state space structure to be 
more fragmented. Furthermore, we found that there was no significant correlation 
between the correct rate of the linear discrimination with respect to FSM states 
(which reflects the extent to which the state space organization reflects the FSM 
states) and savings (not shown). 

One could reasonably argue that the saving is not due to transfer of grammatical 
knowledge but is due to some more low-level processing specific to neural networks. 
For instance, the network may have to move weight values to an appropriate range 
at the first stage of the source grammar learning, which might become unnecessary 
for the leaning of the target grammar. We conducted a simulation to examine the 
effect of altering the initial random weights using the source and target grammars. 
The space limitation does not permit us to present the details, but we did not 
observe the effect of initializing the bias and the weights to appropriate ranges. 

If neither the state space organization nor the lower-level statistics was not the 
source of savings, what was transferred? As already mentioned, state space orga­
nization observed in grammar transfer task is more fragmented than that observed 



in vocabulary transfer task (Fig. 3). These fragmented regions have to be dis­
criminated as far as each region (which represents a combination of the current 
network state and the current vocabulary) has to yield a different network state. 
State hidden nodes provide clues for the discrimination by placing boundaries in the 
network state space. Boundary lines collectively define regions in the state space 
which correspond to sets of state-vocabulary combinations that should be treated 
equivalently in terms of the given task. These boundaries can be shared: for in­
stance, a hypothetical boundary shown by a broken line in the Fig. 4 can be the 
discrimination boundary between white diamonds and white circles (i. e. states 2 
and 3 in the source grammar), as well as it can be one of the discrimination bound­
aries between diamonds with dots and squares with dots (i. e. states 2 and 1 in 
the target grammar). We speculate that shared boundaries may be the source of 
savings. That is , boundaries created for the source grammar learning can be used, 
possibly with some modifications, as one of the boundaries for the target grammar. 
In other words, the source of savings may not be as high level as FSM state space 
but some lower level features at the syntactic processing level. 

5 Conclusion 

We investigated the ability of a recurrent neural network to transfer grammatical 
knowledge of a previously acquired language to another. We found that the network 
was able to transfer the grammatical knowledge to a new grammar with a slightly 
different syntax defined over a new vocabulary (grammar transfer). The extent of 
transfer seemed to depend on the subsequences of symbols generated by the two 
grammars, after the equivalence sets are translated, although the results presented 
in this paper are admittedly very restricted in the type of syntax covered and the size 
of syntactic rules and vocabularies. We hypothesize that the ability of the network 
to transfer grammatical knowledge comes from sharing discrimination boundaries 
of input and vocabulary combinations. In sum, we hope to have demonstrated that 
neural networks do not simply learn associations among input symbols but they 
acquire structural knowledge from inputs. 

References 

[1] Brooks, L. R. , and Vokey, J . R. (1991) Abstract analogies and abstracted grammars: 
Comments on Reber (1989) and Mathews et al. (1090). Journal of Experimental Psychol­
ogy: General, 120, 316-323. 

[2] Dienes, Z. , Altmann, and G. , Gao , S-J. (1999) Mapping across domains without feed­
back: A neural network model of transfer of implicit knowledge, Cognitive Science 23, 
53-82. 

[3] Elman, J. L. (1991) Distributed representation , simple recurrent neural networks, and 
grammatical structure. Machine Learning, 7, 195-225. 

[4] Giles, C. L. , Miller, C. B. , Chen, D. , Chen, H. H. , Sun, G. Z. , and Lee, Y. C. (1992) 
Learning and Extracting Finite State Automata with Second-Order Recurrent Neural Net­
works, it Neural Computation, 4 , 393-495. 

[5] Hanson, S. J., Negishi, M., (2001) The emergence of explicit knowledge (symbols & 
rules) in (associationist) neural networks, Submitted. 

[6] Reber, A. (1969) Transfer of syntactic structure in synthetic languages. Journal of 
Experimental Psychology, 81 , 115-119. 

[7] Williams, R . J. and Zipser, D. (1989) A learning algorithm for continually running fully 
recurrent neural networks, Neural Computation, 1 (2) , 270. 


