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Abstract 

Factor analysis and principal components analysis can be used to 
model linear relationships between observed variables and linearly 
map high-dimensional data to a lower-dimensional hidden space. 
In factor analysis, the observations are modeled as a linear com­
bination of normally distributed hidden variables. We describe a 
nonlinear generalization of factor analysis , called "product analy­
sis", that models the observed variables as a linear combination 
of products of normally distributed hidden variables. Just as fac­
tor analysis can be viewed as unsupervised linear regression on 
unobserved, normally distributed hidden variables, product anal­
ysis can be viewed as unsupervised linear regression on products 
of unobserved, normally distributed hidden variables. The map­
ping between the data and the hidden space is nonlinear, so we 
use an approximate variational technique for inference and learn­
ing. Since product analysis is a generalization of factor analysis, 
product analysis always finds a higher data likelihood than factor 
analysis. We give results on pattern recognition and illumination­
invariant image clustering. 

1 Introduction 

Continuous-valued latent representations of observed feature vectors can be useful 
for pattern classification via Bayes rule, summarizing data sets , and producing low­
dimensional representations of data for later processing. 

Linear techniques, including principal components analysis (Jolliffe 1986), factor 
analysis (Rubin and Thayer 1982) and probabilistic principal components analysis 
(Tipping and Bishop 1999) , model the input as a linear combination of hidden 
variables, plus sensor noise. The noise models are quite different in all 3 cases (see 
Tipping and Bishop (1999) for a discussion). For example, whereas factor analysis 
can account for different noise variances in the coordinates of the input, principal 
components analysis assumes that the noise variances are the same in different 



input coordinates. Also, whereas factor analysis accounts for the sensor noise when 
estimating the combination weights, principal components analysis does not. 

Often, the input coordinates are not linearly related, but instead the input vector 
is the result of a nonlinear generative process. In particular, data often can be 
accurately described as the product of unknown random variables. Examples include 
the combination of "style" and "content" (Tenenbaum and Freeman 1997), and the 
combination of a scalar light intensity and a reflectance image. 

We introduce a generalization of factor analysis , called "product analysis" , that per­
forms maximum likelihood estimation to model the input as a linear combination 
of products of hidden variables. Although exact EM is not tractable because the 
hidden variables are nonlinearly related to the input, the form of the product analy­
sis model makes it well-suited to a variational inference technique and a variational 
EM algorithm. 

Other approaches to learning nonlinear representations include principal surface 
analysis (1984) and nonlinear autoencoders (Baldi and Hornik 1989; Diamantaras 
and Kung 1996), which minimize a reconstruction error when the data is mapped 
to the latent space and back; mixtures of linear models (Kambhatla and Leen 
1994; Ghahramani and Hinton 1997; Tipping and Bishop 1999), which approximate 
nonlinear relationships using piece-wise linear patches; density networks (MacKay 
1995), which use Markov chain Monte Carlo methods to learn potentially very com­
plex density functions; generative topographic maps (Bishop, SvensE'm and Williams 
1998) , which use a finite set of fixed samples in the latent space for efficient infer­
ence and learning; and kernel principal components analysis (Sch6Ikopf, Smola and 
Muller 1998), which finds principal directions in nonlinear functions of the input. 

Our goals in developing product analysis is to introduce a technique that 

• produces a density estimator of the data 

• separates sensor noise from the latent structure 

• learns a smooth, nonlinear map from the input to the latent space 

• works for high-dimensional data and high-dimensional latent spaces 

• is particularly well-suited to products of latent variables 

• is computationally efficient 

While none of the other approaches described above directly addresses all of these 
goals, product analysis does. 

2 Factor analysis model 

Of the three linear techniques described above, factor analysis has the simplest 
description as a generative model of the data. The input vector x is modeled using 
a vector of hidden variables z. The hidden variables are independent and normally 
distributed with zero mean and unit variance: 

p(z) = N(z ; 0, I). (1) 

The input is modeled as a linear combination of the hidden variables , plus indepen­
dent Gaussian noise: 

p(xlz) = N(x; Az, \]f). (2) 

The model parameters are the factor loading matrix A and the diagonal matrix of 
sensor noise variances, \]f. 



Factor analysis (d. (Rubin and Thayer 1982)) is the procedure for estimat­
ing A and lJI using a training set. The marginal distribution over the input is 
p(x) = N(x; 0, AA T + lJI), so factor analysis can be viewed as estimating a low­
rank parameterization of the covariance matrix of the data. 

3 Product analysis model 

In the "product analyzer", the input vector x is modeled using a vector of hidden 
variables z, which are independent and normally distributed with zero mean and 
unit variance: 

p(z) = N(z; 0, I). (3) 

In factor analysis, the input is modeled as a linear combination of the hidden vari­
ables. In product analysis, the input is modeled as a linear combination of mono­
mials in the hidden variables. The power of variable Zk in monomial i is Sik. So, 
the ith monomial is 

Ji(z) = II ZZik. (4) 
k 

Denoting the vector of Ji(z) 's by f(z) , the density of the input given z is 

p(xlz) = N(x; Af(z) , lJI). (5) 

The model parameters are A and the diagonal covariance matrix lJI . Here, we 
learn A , maintaining the distribution over z constant. Alternatively, if A is known 
apriori, we can learn the distribution over z, maintaining A to be fixed. 

The matrix S = {Sik} can be specified beforehand, estimated from the data using 
cross-validation, or averaged over in a Bayesian fashion. When S = I, J(z) = z and 
the product analyzer simplifies to the factor analyzer. If, for some i, Sik = 0, for all 
k, Ji(z) = 1 and this monomial will account for a constant offset in the input. 

4 Product analysis 

Exact EM in the product analyzer is intractable, since the sufficient statistics require 
averaging over the posterior p(zlx), for which we do not have a tractable expression. 

Instead, we use a variational approximation (Jordan et al. 1998) , where for each 
training case, the posterior p(zlx) is approximated by a factorized Gaussian dis­
tribution q(z) and the parameters of q(z) are adjusted to make the approximation 
accurate. Then, the approximation q(z) is used to compute the sufficient statistics 
for each training case in a generalized EM algorithm (Neal and Hinton 1993). 

The q-distribution is specified by the variational parameters 'f/ and ~: 

q(z) = N(z; 'f/, ~), (6) 

where ~ is a diagonal covariance matrix. 

q is optimized by minimizing the relative entropy (Kullback-Leibler divergence), 

1 q(z) 
J( = z q(z) In p(zlx) . (7) 

In fact , minimizing this entropy is equivalent to maximizing the following lower 
bound on the log-probability of the observation: 

B = 1 q(z) In p~7~~) ~ lnp(x) (8) 



Pulling lnp(x) out of the integral, the bound can be expressed as 

B = lnp(x) - 1 q(z) In p~~~~) = lnp(x) - K. (9) 

Since lnp(x) does not directly depend on the variational parameters, maximizing B 
is equivalent to minimizing K. Note that since K :::=: 0, B :S lnp(x). Using Lagrange 
multipliers, it is easy to show that the bound is maximized when q(z) = p(zlx), in 
which case K = 0 and B = lnp(x). 

Substituting the expressions for p(z), p(xlz) and q(z) into (8), and using the fact 
that f(z)T ATw-1 Af(z) = tr(f(z)T ATw-1 Af(z)) = tr(ATw-1 Af(z)f(z)T), we 
have 

B = ~ (In I 27fe<I> I -In 127fWI -In 127f11 

-l1Tl1- XTW-1x + 2xTw-1 AE[f(z)] + tr(A TW-l AE[f(z)f(z)T])), 

(10) 

where E[] denotes an expectation with respect to q(z) . 

The expectations are simplified as follows: 

E[!i(Z)] = E[II ZZik] = II E[ZZik] = II m Sik (T)k, ¢k), 
k k k 

E[Ji(Z)!j(z)] = E[II z:idSik ] = IIE[z:ik+sik ] = II mSik+Sik(T)k,¢k), 
k k k 

(11) 

where mn(T), ¢) is the nth moment under a Gaussian with mean T) and variance 
¢. Closed forms for the mn(T), ¢) are found by setting derivatives of the Gaussian 
moment generating function to zero: 

(12) 

After substituting the closed forms for the moments, B is a polynomial in the T)k 'S 
and the (Pk's. For each training case, B is maximized with respect to the T)k'S and 
the ¢k'S using, e.g., conjugate gradients. The model parameters A and W that 
maximize the sum of the bounds for the training cases can be computed directly, 
since W does not affect the solution for A, B is quadratic in A , and the optimal W 
can be written in terms of A and the variational parameters. 

If the power of each latent variable is restricted to be 0 or 1 in each monomial, 
o :S Sik :S 1, the above expressions simplify to 

k k 

In this case, we can directly maximize B with respect to each T)k in turn, since B is 
quadratic in each T)k. 

5 Experimental results: 

5.1 Classification results on the Wisconsin breast cancer database: We 
obtained results on using product analysis for classification of malignant and benign 
cancer using the breast cancer database provided by Dr. Wolberg from the Univ. 
of Wisconsin. Each observation in the database is characterized by nine cytological 
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Figure 1: a) Data from training set. Mean images learned using b) product analysis 
c) mixture of gaussians 

features, namely, lump thickness, uniformity of cell and shape, marginal adhesion, 
single epithelial cell size, bare nuclei, bland chromotin, normal nucleoli and mitoses. 
Each feature is assigned an integer between 1 and 10. 

In their earlier work (Wolberg and Mangasarian 1990) , the authors used linear pro­
gramming for classification. The objective was to find a hyperplane that separates 
the classes of malignant and benign cancer. In the absence of a separating plane, 
average sum of misclassifications of each class is minimized. 

Our approach is learn one density model for the benign feature vectors and a second 
density model for the malignant feature vectors and then use Bayes rule to classify an 
input vector. With separate models , classification involves assigning the observation 
to the model that provides the largest probability for occurrence of that observation 
as given by, 

P( l ) P(xlclass)P(class) c as s Ix = --=--:----:-:-----:-=-:-:----'---:-'---=--:'---c---'-----,-----'-----:-=---:-----::-------,-
P(xlbenign)P(benign) + P(xlmalignant)P(malignant) 

To compare with the result reported in (Wolberg and Mangasarian 1990), 4.1 % 
error rate on 369 instances, we used the same set for our learning scheme and found 
that the product analysis produced 4% misclassfication. 

In addition, to compare the recognition rate of product analysis with the recognition 
rate of factor analysis, we divided the data set into 3 sets for training, validation and 
testing. The parameters of the model are learned using the training set, and tested 
on the validation set. This is repeated for 20 times, remembering the parameters 
that provided the best classification rate on the validation set. Finally, the param­
eters that provided the best performance on the validation set is used to classify 
the test set, only once. Since the data is limited, we perform this experimentation 
on 4 different random breakups of data into training, validation and test set. For 
product analysis model, we chose 3 hidden variables without optimization but for 
factor analysis , we chose the optimum number of factors. The average error rate on 
the 4 breakups was 5% using product analysis and 5.59% using factor analysis. 



Figure 2: Images generated from the learned mixture of product analyzers 

Figure 3: First row: Observation. Second row: corresponding image normalized for 
translation and lighting after lighting & transformation invariant model is learned 

5.2 Mixture of lighting invariant appearance models: Often, objects are 
imaged under different illuminants. To learn an appearance model, we want to 
automatically remove the lighting effects and infer lighting-normalized images. 

Since ambient light intensity and reflectances of patches on the object multiply to 
produce a lighting-affected image, we can model lighting-invariance using a prod­
uct analyzer. P(x,z) = P(xlz)P(z), where x is the vector of pixel intensities of 
the observation, Zl is the random variable describing the light intensity, and the 
remaining Zi are the pixel intensities in the lighting normalized image. We learn 
the distribution over z, where f(z) = [ZlZ2, ZlZ3, ... ZlZN+l]T and A is identity. By 
infering Zl, we can remove its effect on observation. The mixture model of product 
analyzer has joint distribution 7rc P(xlz)P(z), where 7rc is the probability of each 
class. It can be used to infer various kinds of images (e.g. faces of different people) 
under different lighting conditions. 

We trained this model on images with 2 different poses of the same person(Fig. la). 
The variation in the images is governed by change in pose, light, and background 
clutter. Fig. Ib and Fig. lc compares the components learned using a mixture of 
product analyzers and a mixture of Gaussians. Due to limited variation in the 
pose and large variation in lighting, the mixture of gaussians is unable to extract 
the mean images. However, mixture of product analyzers is able to capture the 
distributions well. (Fig. 3). 

5.3 Transformation and lighting invariant appearance models: Geomet­
ric transformations like shift and shearing can occur when scenes are imaged. Trans­
formation invariant mixtures of Guassians and factor analyzers (Frey and Jojic 
2002; Jojic et al. 2001) enable infering transformation-neutral image. Here, we 
add lighting-invariance to this framework enabling clustering based on interesting 
features such as pose, without concern for transformation and lighting effects. 



6 Conclusions 

We introduced a density model that explains observations as products of hidden 
variables and we presented a variational technique for inference and learning in 
this model. On the Wisonsin breast cancer data, we found that product analysis 
outperforms factor analysis, when used with Bayes rule for pattern classification. 
We also found that product analysis was able to separate the two hidden causes, 
lighting and image noise in noisy images with varying illumination and varying pose. 
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