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Abstract 

We propose a method for the fast estimation of hyperparameters 
in large networks, based on the linear response relation in the cav­
ity method, and an empirical measurement of the Green's func­
tion. Simulation results show that it is efficient and precise, when 
compared with cross-validation and other techniques which require 
matrix inversion. 

1 Introduction 

It is well known that correct choices of hyperparameters in classification and regres­
sion tasks can optimize the complexity of the data model , and hence achieve the 
best generalization [1]. In recent years various methods have been proposed to esti­
mate the optimal hyperparameters in different contexts, such as neural networks [2], 
support vector machines [3, 4, 5] and Gaussian processes [5]. Most of these meth­
ods are inspired by the technique of cross-validation or its variant , leave-one-out 
validation. While the leave-one-out procedure gives an almost unbiased estimate 
of the generalization error, it is nevertheless very tedious. Many of the mentioned 
attempts aimed at approximating this tedious procedure without really having to 
sweat through it. They often rely on theoretical bounds, inverses to large matrices, 
or iterative optimizations. 

In this paper, we propose a new approach to hyperparameter estimation in large 
systems. It is known that large networks are mean-field systems, so that when one 
example is removed by the leave-one-out procedure, the background adjustment 
can be analyzed by a self-consistent perturbation approach. Similar techniques 
have been applied to the neural network [6], Bayesian learning [7] and the support 
vector machine [5]. They usually involve a macroscopic number of unknown vari­
ables, whose solution is obtained through the inversion of a matrix of macroscopic 
size, or iteration. Here we take a further step to replace it by a direct measurement 
of the Green's function via a small number of learning processes. The proposed 
procedure is fast since it does not require repetitive cross-validations, matrix in­
versions, nor iterative optimizations for each set of hyperparaemters. We will also 
present simulation results which show that it is an excellent approximation. 



The proposed technique is based on the cavity method, which was adapted from 
disordered systems in many-body physics. The basis of the cavity method is a 
self-consistent argument addressing the situation of removing an example from the 
system. The change on removing an example is described by the Green's function, 
which is an extremely general technique used in a wide range of quantum and 
classical problems in many-body physics [8]. This provides an excellent framework 
for the leave-one-out procedure. In this paper, we consider two applications of 
the cavity method to hyperparameter estimation, namely the optimal weight decay 
and the optimal learning time in feedforward networks. In the latter application, 
the cavity method provides, as far as we are aware of, the only estimate of the 
hyperparameter beyond empirical stopping criteria and brute force cross-validation. 

2 Steady-State Hyperparameter Estimation 

Consider the network with adjustable parameters w. An energy function E is 
defined with respect to a set of p examples with inputs and outputs respectively 
given by {IL and y'", JL = 1, ... ,p, where (IL is an N-dimensional input vector with 
components e; , j = 1,· ·· ,N, and N » 1 is macroscopic. We will first focus on 
the dynamics of a single-layer feedforward network and generalize the results to 
multilayer networks later. In single-layer networks, E has the form 

E = L f(X'",y'") + R(w). (1) 

'" 
Here f( x'" , y'") represents the error function with respect to example JL. It is ex­
pressed in terms of the activation x'" == w· (IL. R( w) represents a regularization 
term which is introduced to limit the complexity of the network and hence enhance 
the generalization ability. Learning is achieved by the gradient descent dynamics 

dWj(t) _ _ ~_oE_ 
dt 

(2) 

The time-dependent Green's function Gjk(t, s) is defined as the response of the 
weight Wj at time t due to a unit stimulus added at time s to the gradient term with 
respect to weight Wk, in the limit of a vanishing magnitude of the stimulus. Hence 
if we compare the evolution of Wj(t) with another system Wj(t) with a continuous 
perturbative stimulus Jhj(t), we would have 

dWj(t) = _~ oE Jh() 
dt Now. + J t , 

J 

(3) 

and the linear response relation 

Wj(t) = Wj(t) + L J dsGjk(t,s)Jhk(s). 
k 

(4) 

Now we consider the evolution ofthe network w;'"(t) in which example JL is omitted 
from the training set. For a system learning macroscopic number of examples, the 
changes induced by the omission of an example are perturbative, and we can assume 
that the system has a linear response. Compared with the original network Wj(t), 
the gradient of the error of example JL now plays the role of the stimulus in (3). 
Hence we have 

(5) 



Multiplying both sides by ~f and summing over j, we obtain 

1-'( ) - I-'() J [1 '" I-'G ( ) I-']OE(XI-'(S)'YI-') h t - x t + ds N "7:~j jk t ,s ~k oxl-'(s)' 

Here hl-'(t) == V;\I-'(t) . ~ is called the cavity activation of example ft. 
dynamics has reached the steady state, we arrive at 

hI-' I-' OE(XI-' , yl-') 
= x +, oxl-' ' 

where, = limt--+oo J dS[Ljk ~fGjk (t , s)~r]j N is the susceptibility. 

(6) 

When the 

(7) 

At time t , the generalization error is defined as the error function averaged over the 
distribution of input (, and their corresponding output y, i.e. , 

(8) 

where x == V; . (is the network activation. The leave-one-out generalization error is 
an estimate of 109 given in terms ofthe cavity activations hI-' by fg = LI-' 10 (hI-' ,yl-')jp. 
Hence if we can estimate the Green's function, the cavity activation in (7) provides 
a convenient way to estimate the leave-one-out generalization error without really 
having to undergo the validation process. 

While self-consistent equations for the Green's function have been derived using 
diagrammatic methods [9], their solutions cannot be computed except for the spe­
cific case of time-translational invariant Green's functions , such as those in Adaline 
learning or linear regression. However, the linear response relation (4) provides a 
convenient way to measure the Green's function in the general case. The basic idea 
is to perform two learning processes in parallel , one following the original process 
(2) and the other having a constant stimulus as in (3) with 6hj (t) = TJ6jk, where 
8j k is the Kronecka delta. When the dynamics has reached the steady state, the 
measurement Wj - Wj yields the quantity TJ Lk J dsGjk(t, s). 

A simple averaging procedure, replacing all the pairwise measurements between the 
stimulation node k and observation node j, can be applied in the limit of large 
N. We first consider the case in which the inputs are independent and normalized, 
i.e., (~j) = 0, (~j~k) = 8j k. In this case, it has been shown that the off-diagonal 
Green's functions can be neglected, and the diagonal Green's functions become self­
averaging, i.e. , Gjk(t , s) = G(t, s)8jk , independent of the node labels [9], rendering 
, = limt--+oo J dsG(t, s). 

In the case that the inputs are correlated and not normalized, we can apply standard 
procedures of whitening transformation to make them independent and normalized 
[1]. In large networks, one can use the diagrammatic analysis in [9] to show that 
the (unknown) distribution of inputs does not change the self-averaging property of 
the Green's functions after the whitening transformation. Thereafter, the measure­
ment of Green's functions proceeds as described in the simpler case of independent 
and normalized inputs. Since hyperparameter estimation usually involves a series 
of computing fg at various hyperparameters, the one-time preprocessing does not 
increase the computational load significantly. 

Thus the susceptibility, can be measured by comparing the evolution of two pro­
cesses: one following the original process (2), and the other having a constant 
stimulus as in (3) with 8h j (t) = TJ for all j. When the dynamics has reached the 
steady state, the measurement (Wj - Wj) yields the quantity TJ,. 



We illustrate the extension to two-layer networks by considering the committee ma­
chine, in which the errorfunction takes the form E(2::a !(xa), y) , where a = 1,· ··, nh 

is the label of a hidden node, Xa == wa . [is the activation at the hidden node a, 
and! represents the activation function. The generalization error is thus a function 
of the cavity activations of the hidden nodes, namely, E9 = 2::JL E(2::a !(h~), yJL) /p, 
where h~ = w~JL . (IL . When the inputs are independent and normalized, they are 
related to the generic activations by 

hJL- JL+'" aE(2::c !(X~) , yJL) 
a - Xa ~ "lab a JL ' 

b Xb 
(9) 

where "lab = limt~oo J dsGab(t, s) is the susceptibility tensor. The Green's function 
Gab(t, s) represents the response of a weight feeding hidden node a due to a stimulus 
applied at the gradient with respect to a weight feeding node b. It is obtained by 
monitoring nh + 1 learning processes, one being original and each of the other nh 
processes having constant stimuli at the gradients with respect to one of the hidden 
nodes, viz., 

dw~~) (t) _ 1 aE 
dt - - N ------=:(b) + 'f)rSab , b = 1, ... ,nh· aWaj 

(10) 

When the dynamics has reached the steady state, the measurement (w~7 - Waj) 

yields the quantity 'f)'Yab. 

We will also compare the results with those obtained by extending the analysis of 
linear unlearning leave-one-out (LULOO) validation [6]. Consider the case that the 
regularization R(w) takes the form of a weight decay term, R(w) = N 2::ab AabWa . 
Wb/2. The cavity activations will be given by 

hJL = JL + '" ( iJ 2:: jk ~'j(A + Q)~}bk~r ) aE(2::c !(xn, yJL)) 
a Xa ~ ," 1 a JL ' 

b 1 - 11 2::cjdk ~'j !'(xn(A + Q)~,dd'(x~)~r Xb 
(11) 

where E~ represents the second derivative of E with respect to the student output 
for example /1, and the matrix Aaj,bk = AabrSjk and Q is given by 

Qaj,bk = ~ 2: ~'j f'(x~)f'(x~)~r· (12) 
JL 

The LULOO result of (11) differs from the cavity result of (9) in that the suscep­
tibility "lab now depends on the example label /1, and needs to be computed by 
inverting the matrix A + Q. Note also that second derivatives of the error term 
have been neglected. 

To verify the proposed method by simulations, we generate examples from a noisy 
teacher network which is a committee machine 

nh (1 ) yJL = ~ erf yf2Ba · f + (Jzw (13) 

Here Ba is the teacher vector at the hidden node a. (J is the noise level. ~'j and 
zJL are Gaussian variables with zero means and unit variances. Learning is done by 
the gradient descent of the energy function 

(14) 



and the weight decay parameter ,X is the hyperparameter to be optimized. The 
generalization error fg is given by 

where the averaging is performed over the distribution of input { and noise z. It can 
be computed analytically in terms of the inner products Q ab = wa . Wb, Tab = Ba . Bb 
and Rab = Ba . Wb [10]. However, this target result is only known by the teacher , 
since Tab and Rab are not accessible by the student. 

Figure 1 shows the simulation results of 4 randomly generated samples. Four results 
are compared: the target generalization error observed by the teacher, and those 
estimated by the cavity method, cross-validation and extended LULOO. It can 
be seen that the cavity method yields estimates of the optimal weight decay with 
comparable precision as the other methods. 

For a more systematic comparison, we search for the optimal weight decay in 10 sam­
ples using golden section search [11] for the same parameters as in Fig. 1. Compared 
with the target results, the standard deviations of the estimated optimal weight de­
cays are 0.3, 0.25 and 0.24 for the cavity method, sevenfold cross-validation and 
extended LULOO respectively. In another simulation of 80 samples of the single­
layer perceptron, the estimated optimal weight decays have standard deviations of 
1.2, 1.5 and 1.6 for the cavity method, tenfold cross-validation and extended LU­
LOO respectively (the parameters in the simulations are N = 500, p = 400 and a 
ranging from 0.98 to 2.56). 

To put these results in perspective, we mention that the computational resources 
needed by the cavity method is much less than the other estimations. For example, 
in the single-layer perceptrons, the CPU time needed to estimate the optimal weight 
decay using the golden section search by the teacher, the cavity method, tenfold 
cross-validation and extended LULOO are in the ratio of 1 : 1.5 : 3.0 : 4.6. 

Before concluding this section, we mention that it is possible to derive an expression 
of the gradient dEg I d,X of the estimated generalization error with respect to the 
weight decay. This provides us an even more powerful tool for hyperparameter 
estimation. In the case of the search for one hyperparameter, the gradient enables 
us to use the binary search for the zero of the gradient, which converges faster 
than the golden section search. In the single-layer experiment we mentioned, its 
precision is comparable to fivefold cross-validations, and its CPU time is only 4% 
more than the teacher's search. Details will be presented elsewhere. In the case of 
more than one hyperparameters , the gradient information will save us the need for 
an exhaustive search over a multidimensional hyperparameter space. 

3 Dynamical Hyperparameter Estimation 

The second example concerns the estimation of a dynamical hyperparameter, 
namely the optimal early stopping time, in cases where overtraining may plague 
the generalization ability at the steady state. In perceptrons, when the examples 
are noisy and the weight decay is weak, the generalization error decreases in the 
early stage of learning, reaches a minimum and then increases towards its asymp­
totic value [12, 9]. Since the early stopping point sets in before the system reaches 
the steady state, most analyses based on the equilibrium state are not applicable. 
Cross-validation stopping has been proposed as an empirical method to control 
overtraining [13]. Here we propose the cavity method as a convenient alternative. 
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Figure 1: (a-d) The dependence ofthe generalization error of the multilayer percep­
tron on the weight decay for N = 200, p = 700, nh = 3, (J = 0.8 in 4 samples. The 
solid symbols locate the optimal weight decays estimated by the teacher (circle), the 
cavity method (square), extended LULOO (diamond) and sevenfold cross-validation 
(triangle) . 

In single-layer perceptrons, the cavity activations of the examples evolve according 
to (6), enabling us to estimate the dynamical evolution of the estimated general­
ization error when learning proceeds. The remaining issue is the measurement of 
the time-dependent Green's function. We propose to introduce an initial homoge­
neous stimulus, that is , Jhj (t) = 1]J(t) for all j. Again, assuming normalized and 
independent inputs with (~j) = 0 and (~j~k) = Jjk , we can see from (4) that the 
measurement (Wj(t) - Wj(t)) yields the quantity 1]G(t, 0). 

We will first consider systems that are time-translational invariant, i.e., G(t, s) = 
G(t - s, 0). Such are the cases for Adaline learning and linear regression [9], where 
the cavity activation can be written as 

h'"(t) = x'"(t) + J dsG(t - s, 0) OE(X'"(S), y'"). 
ox,"(s) 

This allows us to estimate the generalization error Eg(t) via Eg(t) 

(16) 

2:.," E(h'"(t), y'")/p, whose minimum in time determines the early stopping point. 

To verify the proposed method in linear regression, we randomly generate exam­
ples from a noisy teacher with y'" = iJ . f'" + (Jzw Here iJ is the teacher vec­
tor with B2 = 1. e; and z'" are independently generated with zero means and 
unit variances. Learning is done by the gradient descent of the energy function 
E(t) = 2:.," (y'" - w(t) . f'")2/2 . The generalization error Eg(t) is the error av-

eraged over the distribution of input [ and their corresponding output y, i.e., 
Eg(t) = ((iJ . [ + (JZ - w· [)2/2). As far as the teacher is concerned, Eg(t) can 
be computed as Eg(t) = (1 - 2R(t) + Q(t) + (J2)/2. where R(t) = w(t) . iJ and 
Q(t) = W(t)2. 

Figure 2 shows the simulation results of 6 randomly generated samples. Three re­
sults are compared: the teacher's estimate, the cavity method and cross-validation. 
Since LULOO is based on the equilibrium state, it cannot be used in the present 



context. Again, we see that the cavity method yields estimates of the early stop­
ping time with comparable precision as cross-validation. The ratio of the CPU time 
between the cavity method and fivefold cross-validation is 1 : 1.4. 

For nonlinear regression and multilayer networks, the Green 's functions are not 
time-translational invariant. To estimate the Green 's functions in this case, we have 
devised another scheme of stimuli. Preliminary results for the determination of the 
early stopping point are satisfactory and final results will be presented elsewhere. 
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Figure 2: (a-f) The evolution of the generalization error of linear regression for 
N = 500, p = 600 and (J = 1. The solid symbols locate the early stopping points 
estimated by the teacher (circle), the cavity method (square) and fivefold cross­
validation (diamond). 

4 Conclusion 

We have proposed a method for the fast estimation of hyperparameters in large 
networks, based on the linear response relation in the cavity method, combined 
with an empirical method of measuring the Green's function. Its efficiency depends 
on the independent and identical distribution of the inputs, greatly reducing the 
number of networks to be monitored. It does not require the validation process 
or the inversion of matrices of macroscopic size, and hence its speed compares 
favorably with cross-validation and other perturbative approaches such as extended 
LULOO. For multilayer networks, we will explore further speedup of the Green 's 
function measurement by multiplexing the stimuli to the different hidden units into 
a single network, to be compared with a reference network. We will also extend the 
technique to other benchmark data to study its applicability. 

Our initial success indicates that it is possible to generalize the method to more 
complicated systems in the future. The concept of Green's functions is very general, 
and its measurement by comparing the states of a stimulated system with a reference 
one can be adopted to general cases with suitable adaptation. Recently, much 
attention is paid to the issue of model selection in support vector machines [3, 4, 5]. 
It would be interesting to consider how the proposed method can contribute to these 
cases. 
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