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Abstract

Probabilistic mixture models are used for a broad range of data anal-
ysis tasks such as clustering, classification, predictive modeling, etc.
Due to their inherent probabilistic nature, mixture models can easily be
combined with other probabilistic or non-probabilistic techniques thus
forming more complex data analysis systems. In the case of online data
(where there is a stream of data available) models can be constantly up-
dated to reflect the most current distribution of the incoming data. How-
ever, in many business applications the models themselves represent a
parsimonious summary of the data and therefore it is not desirable to
change models frequently, much less with every new data point. In such
a framework it becomes crucial to track the applicability of the mixture
model and detect the point in time when the model fails to adequately
represent the data. In this paper we formulate the problem of change
detection and propose a principled solution. Empirical results over both
synthetic and real-life data sets are presented.

1 Introduction and Notation

Consider a data set D = {x1, x2, . . . , xn} consisting of n independent, identically dis-
tributed (iid) data points. In context of this paper the data points could be vectors, se-
quences, etc. Further, consider a probabilistic mixture model that maps each data set to a
real number, the probability of observing the data set:

P (D|Θ) =
n∏

i=1

P (xi|Θ) =
n∏

i=1

K∑

k=1

πkP (xi|θk), (1)

where the model is parameterized by Θ = {π1, . . . , πK , θ1, . . . , θK}. Each P (.|θk) repre-
sents a mixture component, while πi represents mixture weights. It is often more convenient
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to operate with the log of the probability and define the log-likelihood function as:

l(Θ|D) = log P (D|Θ) =
n∑

i=1

log P (xi|Θ) =
n∑

i=1

LogPi

which is additive over data points rather than multiplicative. The LogPi terms we introduce
in the notation represent each data point’s contribution to the overall log-likelihood and
therefore describe how well a data point fits under the model. For example, Figure 3 shows
a distribution of LogP scores using a mixture of conditionally independent (CI) models.

Maximizing probability1 of the data with respect to the parameters Θ can be accomplished
by the Expectation-Maximization (EM) algorithm [6] in linear time in both data complexity
(e.g., number of dimensions) and data set size (e.g., number of data points). Although EM
guarantees only local optimality, it is a preferred method for finding good solutions in
linear time. We consider an arbitrary but fixed parametric form of the model, therefore
we sometimes refer to a specific set of parameters Θ as the model. Note that since the
logarithm is a monotonic function, the optimal set of parameters is the same whether we
use likelihood or log-likelihood.

Consider an online data source where there are data sets Dt available at certain time in-
tervals t (not necessarily equal time periods or number of data points). For example, there
could be a data set generated on a daily basis, or it could represent a constant stream of
data from a monitoring device. In addition, we assume that we have an initial model Θ0

that was built (optimized, fitted) on some in-sample data D0 = {D1, D2, . . . , Dt0}. We
would like to be able to detect a change in the underlying distribution of data points within
data sets Dt that would be sufficient to require building of a new model Θ1. The criterion
for building a new model is loosely defined as “the model does not adequately fit the data
anymore”.

2 Model Based Population Similarity

In this section we formulate the problem of model-based population similarity and tracking.
In case of mixture models we start with the following observations:

• The mixture model defines the probability density function (PDF) that is used to
score each data point (LogP scores), leading to the score for the overall population
(log-likelihood or sum of LogP scores).

• The optimal mixture model puts more PDF mass over dense regions in the data
space. Different components allow the mixture model to distribute its PDF over
disconnected dense regions in the data space. More PDF mass in a portion of the
data space implies higher LogP scores for the data points lying in that region of
the space.

• If model is to generalize well (e.g., there is no significant overfitting) it cannot put
significant PDF mass over regions of data space that are populated by data points
solely due to the details of a specific data sample used to build the model.

• Dense regions in the data space discovered by a non-overfitting model are the
intrinsic property of the true data-generating distribution even if the functional
form of the model is not well matched with the true data generating distribution. In
the latter case, the model might not be able to discover all dense regions or might
not model the correct shape of the regions, but the regions that are discovered (if
any) are intrinsic to the data.

1This approach is called maximum-likelihood estimation. If we included parameter priors we
could equally well apply results in this paper to the maximum a posteriori estimation.



• If there is confidence that the model is not overfitting and that it generalizes well
(e.g., cross-validation was used to determine the optimal number of mixture com-
ponents), the new data from the same distribution as the in-sample data should be
dense in the same regions that are predicted by the model.

Given these observations, we seek to define a measure of data-distribution similarity based
on how well the dense regions of the data space are preserved when new data is introduced.
In model based clustering, dense regions are equivalent to higher LogP scores, hence we
cast the problem of determining data distribution similarity into one of determining LogP
distribution similarity (relative to the model). For example, Figure 3 (left) shows a his-
togram of one such distribution. It is important to note several properties of Figure 3: 1)
there are several distinct peaks from which distribution tails off toward smaller LogP val-
ues, therefore simple summary scores fail to efficiently summarize the LogP distribution.
For example, log-likelihood is proportional to the mean of LogP distribution in Figure 3,
and the mean is not a very useful statistic when describing such a multimodal distribution
(also confirmed experimentally); 2) the histogram itself is not a truly non-parametric repre-
sentation of the underlying distribution, given that the results are dependent on bin width.
In passing we also note that the shape of the histogram in Figure 3 is a consequence of the
CI model we use: different peaks come from different discrete attributes, while the tails
come from continuous Gaussians. It is a simple exercise to show that LogP scores for
a 1-dimensional data set generated by a single Gaussian have an exponential distribution
with a sharp cutoff on the right and tail toward the left.

To define the similarity of the data distributions based on LogP scores in a purely non-
parametric way we have at our disposal the powerful formalism of Kolmogorov-Smirnov
(KS) statistics [7]. KS statistics make use of empirical cumulative distribution functions
(CDF) to estimate distance between two empirical 1-dimensional distributions, in our case
distributions of LogP scores. In principle, we could compare the LogP distribution of the
new data set Dt to that of the training set D0 and obtain the probability that the two came
from the same distribution. In practice, however, this approach is not feasible since we do
not assume that the estimated model and the true data generating process share the same
functional form (see Section 3). Consequently, we need to consider the specific KS score
in relation to the natural variability of the true data generating distribution. In the situation
with streaming data, the model is estimated over the in-sample data D0. Then the individual
in-sample data sets D1, D2, . . . , Dt0 are used to estimate the natural variability of the KS
statistics. This variability needs to be quantified due to the fact that the model may not
truly match the data distribution. When the natural variance of the KS statistics over the
in-sample data has been determined, the LogP scores for a new dataset Dt, t > t0 are
computed. Using principled heuristics, one can then determine whether or not the LogP
signature for Dt is significantly different than the LogP signatures for the in-sample data.

To clarify various steps, we provide an algorithmic description of the change detection
process.

Algorithm 1 (Quantifying Natural Variance of KS Statistics):
Given an “in-sample” dataset D0 = {D1, D2, . . . , Dt0}, proceed as follows:

1. Estimate the parameters Θ0 of the mixture model P (D|Θ) over D0 (see equa-
tion (1)).

2. Compute

LogP (Di) =

ni∑

î=1

log P (xî|Θ0), xî ∈ Di, ni = |Di|, i = 1, . . . , t0. (2)

3. For 1 ≤ i, j ≤ t0, compute LKS(i, j) = log [PKS(Di, Dj)]. See [7] for details on
PKS computation.



4. For 1 ≤ i ≤ t0, compute the KS measure MKS(i) as

MKS(i) =

∑t0
j=1

LKS(i, j)

t0
. (3)

5. Compute µM = Mean[MKS(i)] and σM = STD[MKS(i)] to quantify the natural
variability of MKS over the “in-sample” data.

Algorithm 2 (Evaluating New Data):
Given a new dataset Dt, t > t0, µM and σM proceed as follows:

1. Compute LogP (Dt) as in (2).

2. For 1 ≤ i ≤ t0, compute LKS(i, t).

3. Compute MKS(t) as in (3).

4. Apply decision criteria using MKS(t), µM , σM to determine whether or not Θ0 is
a good fit for the new data. For example, if

|MKS(t) − µM |

σM

> 3, (4)

then Θ0 is not a good fit any more.

Note, however, that the 3-σ interval be interpreted as a confidence interval only in the
limit when number of data sets goes to infinity. In applications presented in this paper we
certainly do not have that condition satisfied and we consider this approach as an “educated
heuristic” (gaining firm statistical grounds in the limit).

2.1 Space and Time Complexity of the Methodology

The proposed methodology was motivated by a business application with large data sets,
hence it must have time complexity that is close to linear in order to scale well. In order
to assess the time complexity, we use the following notation: nt = |Dt| is the number of
data points in the data set Dt; t0 is the index of the last in-sample data set, but is also the
number of in-sample data sets; n0 = |D0| =

∑t0
t=1

nt is the total number of in-sample
data points (in all the in-sample data sets); n = n0/t0 is the average number of data points
in the in-sample data sets. For simplicity of argument, we assume that all the data sets are
approximately of the same size, that is nt ≈ n.

The analysis presented here does not take into account the time and space complexity
needed to estimated the parameters Θ of the mixture model (1). In the first phase of the
methodology, we must score each of the in-sample data points under the model (to obtain
the LogP distributions) which has time complexity of O(n0). Calculation of KS statistics
for two data sets is done in one pass over the LogP distributions, but it requires that the
LogP scores be sorted, hence it has time complexity of 2n + 2O(n log n) = O(n log n).
Since we must calculate all the pairwise KS measures, this step has time complexity of
t0(t0 − 1)/2 O(n log n) = O(t20n log n). In-sample mean and variance of the KS measure
are obtained in time which is linear in t0 hence the asymptotic time complexity does not
change. In order to evaluate out-of-sample data sets we must keep LogP distributions for
each of the in-sample data sets as well as several scalars (e.g., mean and variance of the
in-sample KS measure) which requires O(n0) memory.

To score an out-of-sample data set Dt, t > t0, we must first obtain the LogP distribution
of Dt which has time complexity of O(n) and then calculate the KS measure relative to
each of the in-sample data sets which has time complexity O(n log n) per in-sample data
set, or t0O(n log n) = O(t0n log n) for the full in-sample period. The LogP distribution
for Dt can be discarded once the pairwise KS measures are obtained.
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Figure 1: Histograms of LogP scores for two data sets generated from the first model
(top row) and two data sets generated from the second model (bottom row). Each data
set contains 50,000 data points. All histograms are obtained from the model fitted on the
in-sample period.

Overall, the proposed methodology requires O(n0) memory, O(t20n log n) time for prepro-
cessing and O(t0n log n) time for out-of-sample evaluation. Further, since t0 is typically a
small constant (e.g., t0 = 7 or t0 = 30), the out-of-sample evaluation practically has time
complexity of O(n log n).

3 Experimental Setup

Experiments presented consist of two parts: experiments on synthetic data and experiments
on the aggregations over real web-log data.

3.1 Experiments on Synthetic Data

Synthetic data is a valuable tool when determining both applicability and limitations of the
proposed approach. Synthetic data was generated by sampling from a a two component CI
model (the true model is not used in evaluations). The data consist of a two-state discrete
dimension and a continuous dimension. First 100 data sets where generated by sampling
from a mixture model with parameters: [π1, π2] = [0.6, 0.4] as weights, θ

1
= [0.8, 0.2]

and θ
2

= [0.4, 0.6] as discrete state probabilities, [µ1, σ
2
1 ] = [10, 5] and [µ2, σ

2
2 ] = [0, 7]

as mean and variance (Gaussian) for the continuous variable. Then the discrete dimension
probability of the second cluster was changed from θ

2
= [0.4, 0.6] to θ′

2
= [0.5, 0.5]

keeping the remaining parameters fixed and an additional 100 data sets were generated by
sampling from this altered model. This is a fairly small change in the distribution and the
underlying LogP scores appear to be very similar as can be seen in Figure 1. The figure
shows LogP distributions for the first two data sets generated from the first model (top row)
and the first two data sets generated from the second model (bottom row). Plots within each
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Figure 2: Average log(KS probability) over the in-sample period for four experiments on
synthetic data, varying the number of data points per data set: a) 1,000; b) 5,000; c) 10,000;
d) 50,000. The dotted vertical line separates in-sample and out-of-sample periods. Note
that y-axes have different scales in order to show full variability of the data.

row should be more similar than plots from different rows, but this is difficult to discern by
visual inspection.

Algorithms 1 and 2 were evaluated by using the first 10 data sets to estimate a two com-
ponent model. Then pairwise KS measures were calculated between all possible data set
pairs relative to the estimated model. Figure 2 shows average KS measures over in-sample
data sets (first 10) for four experiments varying the number of data points in each experi-
ment. Note that the vertical axes are different in each of the plots to better show the range
of values. As the number of data points in the data set increases, the change that occurs
at t = 101 becomes more apparent. At 50,000 data points (bottom right plot of Figure 2)
the change in the distribution becomes easily detectable. Since this number of data points
is typically considered to be small compared to the number of data points in our real life
applications we expect to be able to detect such slight distribution changes.

3.2 Experiments on Real Life Data

Figure 3 shows a distribution for a typical day from a content web-site. There are almost
50,000 data points in the data set with over 100 dimensions each. The LogP score distribu-
tion is similar to that of synthetic data in Figure 1 which is a consequence of the CI model
used. Note, however, that in this data set the true generating distribution is not known
and is unlikely to be purely a CI model. Therefore, the average log KS measure over in-
sample data has much lower values (see Figure 3 right, and plots in Figure 2). Another
way to phrase this observation is to note that since the true generating data distribution is
most likely not CI, the observed similarity of LogP distributions (the KS measure) is much
lower since there are two factors of dissimilarity: 1) different data sets; 2) inability of the
CI model to capture all the aspects of the true data distribution. Nonetheless, the first 31
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Figure 3: Left: distribution of 42655 LogP scores from mixture of conditional indepen-
dence models. The data is a single-day of click-stream data from a commercial web site.
Right: Average log(KS probability) over the 31 day in-sample period for a content web-
site showing a glitch on day 27 and a permanent change on day 43, both detected by the
proposed methodology.

data sets (one month of data) that were used to build the initial model Θ0 can be used to
define the natural variability of the KS measures against which additional data sets can be
compared. The result is that in Figure 3 we clearly see a problem with the distribution on
day 27 (a glitch in the data) and a permanent change in the distribution on day 43. Both
of the detected changes correspond to real changes in the data, as verified by the commer-
cial website operators. Automatic description of changes in the distribution and criteria for
automatic rebuilding of the model are beyond scope of this paper.

4 Related Work

Automatic detection of various types of data changes appear in the literature in several
different flavors. For example, novelty detection ([4], [8]) is the task of determining unusual
or novel data points relative to some model. This is closely related to the outlier detection
problem ([1], [5]) where the goal is not only to find unusual data points, but the ones that
appear not to have been generated by the data generating distribution. A related problem
has been addressed by [2] in the context of time series modeling where outliers and trends
can contaminate the model estimation. More recently mixture models have been applied
more directly to outlier detection [3].

The method proposed in this paper addesses a different problem. We are not interested in
new and unusual data points; on the contrary, the method is quite robust with respect to
outliers. An outlier or two do not necessarily mean that the underlying data distribution has
changed. Also, some of the distribution changes we are interested in detecting might be
considered uninteresting and/or not-novel; for example, a slight shift of the population as
a whole is something that we certainly detect as a change but it is rarely considered novel
unless the shift is drastic.

There is also a set of online learning algorithms that update model parameters as the new
data becomes available (for variants and additional references, e.g. [6]). In that frame-
work there is no such concept as a data distribution change since the models are constantly
updated to reflect the most current distribution. For example, instead of detecting a slight
shift of the population as a whole, online learning algorithms update the model to reflect
the shift.



5 Conclusions

In this paper we introduced a model-based method for automatic distribution change detec-
tion in an online data environment. Given the LogP distribution data signature we further
showed how to compare different data sets relative to the model using KS statistics and how
to obtain a single measure of similarity between the new data and the model. Finally, we
discussed heuristics for change detection that become principled in the limit as the number
of possible data sets increases.

Experimental results over synthetic and real online data indicate that the proposed method-
ology is able to alert the analyst to slight distributional changes. This methodology may be
used as the basis of a system to automatically re-estimate parameters of a mixture model on
an “ as-needed” basis – when the model fails to adequately represent the data after a certain
point in time.
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