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Abstract

Bayesian belief propagation in graphical models has been recently
shown to have very close ties to inference methods based in statis-
tical physics. After Yedidia et al. demonstrated that belief prop-
agation fixed points correspond to extrema of the so-called Bethe
free energy, Yuille derived a double loop algorithm that is guar-
anteed to converge to a local minimum of the Bethe free energy.
Yuille’s algorithm is based on a certain decomposition of the Bethe
free energy and he mentions that other decompositions are possi-
ble and may even be fruitful. In the present work, we begin with
the Bethe free energy and show that it has a principled interpre-
tation as pairwise mutual information minimization and marginal
entropy maximization (MIME). Next, we construct a family of free
energy functions from a spectrum of decompositions of the original
Bethe free energy. For each free energy in this family, we develop
a new algorithm that is guaranteed to converge to a local min-
imum. Preliminary computer simulations are in agreement with
this theoretical development.

1 Introduction

In graphical models, Bayesian belief propagation (BBP) algorithms often (but not
always) yield reasonable estimates of the marginal probabilities at each node [6].
Recently, Yedidia et al. [7] demonstrated an intriguing connection between BBP
and certain inference methods based in statistical physics. Essentially, they demon-
strated that traditional BBP algorithms can be shown to arise from approximations



of the extrema of the Bethe and Kikuchi free energies. Next, Yuille [8] derived new
double-loop algorithms which are guaranteed to minimize the Bethe and Kikuchi
energy functions while continuing to have close ties to the original BBP algorithms.
Yuille’s approach relies on a certain decomposition of the Bethe and Kikuchi free
energies. In the present work, we begin with a new principle—pairwise mutual in-
formation minimization and marginal entropy maximization (MIME)—and derive
a new energy function which is shown to be equivalent to the Bethe free energy.
After demonstrating this connection, we derive a family of free energies closely re-
lated to the MIME principle which also shown to be equivalent, when constraint
satisfaction is exact, to the Bethe free energy. For each member in this family of
energy functions , we derive a new algorithm that is guaranteed to converge to a
local minimum. Moreover, the resulting form of the algorithm is very simple despite
the somewhat unwieldy nature of the algebraic development. Preliminary compar-
isons of the new algorithm with BBP were carried out on spin glass-like problems
and indicate that the new algorithm is convergent when BBP is not. However, the
effectiveness of the new algorithms remains to be seen.

2 Bethe free energy and the MIME principle

In this section, we show that the Bethe free energy can be interpreted as pairwise
mutual information minimization and marginal entropy maximization.

The Bethe free energy for Bayesian belief propagation is written as
Fethe ({Pis Pi» Yij» Nij }) =
S Doy Pig 1, 5) log BAEEL - 37, (ny = 1) 57, ) log 2422
T2 ijiing 2awy N (@) D5, Pij (@i, 25) — pj(a5)]
T2 i 2w Nt (@) [Dg, pij (@i, ;) — pi(s)]
T2 ijiing Yid gy, Pig (@i, 25) — 1) (1)

where ¢;;(z;, ;) def Vi (@i, 5)¢i(xi);(x;) and n, is the number of neighbors of
node 7. Link functions 1;; > 0 are available relational data between nodes ¢ and j.
The singleton function 1; is also available at each node i. The double summation
> i~ 1s carried out only over the nodes that are connected. The Lagrange pa-
rameters {\;;,vi;} are needed in the Bethe free energy (1) to satisfy the following
constraints relating the joint probabilities {p;;} with the marginals {p;}:

D (@i ay) = pi(xy), Y pilasa;) = pi(@), and Y pijlw,a) =1 (2)

ZTi,Tj

The pairwise mutual information is defined as

pij(wi, )
MI;; = pij(xi, @) log ————— (3)
! zzz:] T pi(w)py ()
The mutual information is minimized when the joint probability p;;(z;,x;) =
pi(z:)p;(x;) or equivalently when nodes i and j are independent. When nodes ¢ and
j are connected via a non-separable link ;;(z;, ;) they will not be independent.
We now state the MIME principle.

Statement of the MIME principle: Maximize the marginal entropy and min-
imize the pairwise mutual information using the available marginal and pairwise
link function expectations while satisfying the joint probability constraints.



The pairwise MIME principle leads to the following free energy:
Fyave({pig, pis Yigs Mg }) =
> ijin me] pij(xi, z;)log % + 2202 ., pi(xi) log pi(z:)
= Dijiing Dowi e, Pig (@i x5) loghij (@i, x5) — 30, 50, pil@i) log ¥i(w:)
T i 2wy i (@) [, pij (@i, w5) — pj(a5)]
T iimg 2oy Nii (@) Do, pig (@i, 75) — pil@i)]
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In the above free energy, we minimize the pairwise mutual information and maximize
the marginal entropies. The singleton and pairwise link functions are additional
information which do not allow the system to reach its “natural” equilibrium—a
uniform i.i.d. distribution on the nodes. The Lagrange parameters enforce the
constraints between the pairwise and marginal probabilities. These constraints are
the same as in the Bethe free energy (1). Note that the Lagrange parameter terms
vanish if the constraints in (2) are exactly satisfied. This is an important point
when considering equivalences between different energy functions.

Lemma 1 Provided the constraints in (2) are ezactly satisfied, the MIME free
energy in (4) is equivalent to the Bethe free energy in (1).

Proof: Using the fact that constraint satisfaction is exact and using the identity
pij (@i, 25) = pji(x;, 2;), we may write

- Z Z Dij ,Tzax] Ingz(xz p] x] Z Z Dij LL'“JJ] Ingz(xz)

1J:1>5 Ti,Tj RE R

- _ Zni Zpi(l'i)lngi(xi)’
and Z Z pij (@i, x5) log (i), (x;) anzpl ;) log i (z;). (5)
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We have shown that a marginal entropy term emerges from the mutual information
term in (4) when constraint satisfaction is exact. Collecting the marginal entropy
terms together and rearranging the MIME free energy in (4), we get the Bethe free
energy in (1).

3 A family of decompositions of the Bethe free energy

Recall that the Bethe free energy and the energy function resulting from application
of the MIME principle were shown to be equivalent. However, the MIME energy
function is merely one particular decomposition of the Bethe free energy. As Yuille
mentions [8], many decompositions are possible. The main motivation for consid-
ering alternative decompositions is for algorithmic reasons. We believe that certain
decompositions may be more effective than others. This belief is based on our pre-
vious experience with closely related deterministic annealing algorithms [3, 2]. In
this section, we derive a family of free energies that are equivalent to the Bethe
free energy provided constraint satisfaction is exact. The family of free energies is
inspired by and closely related to the MIME free energy in (4).

Lemma 2 The following family of energy functions indexed by the free parameters
d > 0 and {&} is equivalent to the original Bethe free energy (1) provided the



constraints in (2) are exactly satisfied and the parameters ¢ and r are set to {¢; =
(1 =9)n;} and {r; =1 — n;&;} respectively.

chuiv({pijvpia Yij s /\ZJ}) =

Pij (®i,3;)
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In (6), the first term is no longer the pairwise mutual information as in (4). And
unlike (4), p;(x;) no longer appears in the pairwise mutual information-like term.

Proof: We selectively substitute }_ . pij(2i, ;) = p;(x;) and 3, pij(xi, v;) =
pi(z;) to show the equivalence. First

Z Z pij(wi, @) 1Og[zpij($z‘>wj)]é[zpij(f%%')]6 = 52"1‘ Zpi(wi) log pi (i),

ijii>g wq,ag zj T
. &5
S i) togui @) @) = 3 niki Y pilwn) logi(z). (1)
ij:ii>7 T, k3 zj

Substituting the identities in (7) into (6), we see that the free energies are alge-
braically equivalent.

4 A family of algorithms for belief propagation

We now derive descent algorithms for the family of energy functions in (6). All
the algorithms are guaranteed to converge to a local minimum of (6) under mild
assumptions regarding the number of fixed points. For each member in the family
of energy functions, there is a corresponding descent algorithm. Since the form of
the free energy in (6) is complex and precludes easy minimization, we use algebraic
(Legendre) transformations [1] to simplify the optimization.

- Zpij(xi;Ij)logzpij(xiaxj) =

MiNg, (2,) = Dq, Pij (T 25) log 0ji(wi) + 0ji(wi) = X2, pij (@i, 25)

= pij(@i,x)log > pij(wi,x;) =
Ming, (o) = Doy, Pij(Tis 25) log 0ij(x5) + 04 (25) — D, pij (w4, 75)
—pi(w;) log pi(w;) = pIT%iwI_l) —pi(zi)log pi(wi) + pi(wi) — pi(wi). (8)

We now apply the above algebraic transforms. The new free energy is (after some
algebraic manipulations)

pis(mi, 2
Foquiv({Pijs iy 0ijs pis Vigs Nij}) = E E :Dij(zi-,mj)log%
Uji(zi)gij(mj)

RIS E



15> o zJ>+Zzpl<m>log e +Zqzzp1 )

ijiidti @,

=0 by log vy s, 2w (@09 (2;) anm(m ) log i (w4)

ijii>g wg,w;

+ Z Z)‘w(m] [pr(mw%) pj(x5)] + Z Z)‘JZ Zi [ZPW(%v%) pi(@i)]

ijii>g xj ijii>g xy

> mzmmum—n. (©)

ijii>j Tq,T

We continue to keep the parameters {¢;} and {r;} in (9). However, from Lemma 2,
we know that the equivalence of (9) to the Bethe free energy is predicated upon
appropriate setting of these parameters. In the rest of the paper, we continue to
use ¢ and r for the sake of notational simplicity.

Despite the introduction of new variables via Legendre transforms, the optimiza-
tion problem in (9) is still a minimization problem over all the variables. The
algebraically transformed energy function in (9) is separately convex w.r.t. {pi;,p;}
and w.r.t. {o;,p;} provided 6 € [0,1]. Since the overall energy function is not
convex w.r.t. all the variables, we pursue an alternating algorithm strategy similar
to the double loop algorithm in Yuille [8]. The basic idea is to separately minimize
w.r.t. the variables {o;;, p;} and the variables {p;;,p;}. The linear constraints in
(2) are enforced when minimizing w.r.t the latter and do not affect the convergence
properties of the algorithm since the energy function w.r.t. {p;j,p;} is convez.

We evaluate the fixpoints of {;;, p;}. Note that (9) is convex w.r.t. {o;j,p;}.
oij(xj) me (xi,xj), 0ji(zs) me (xi,x;), and p;(z;) = pi(x;). (10)
T; T

The fixpoints of {p;;, p;} are evaluated next. Note that (9) is convex w.r.t. {p;j,p:}-
R e A o e e
pila) = Pl @)y (e)ed (1)
The constraint satisfaction equations from (2) can be rewritten as

Zpij(iri, zj) = pi(w;) =
Tj
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Similar relations can be obtained for the other constraints in (2). Consider a La-
grange parameter update sequence where the Lagrange parameter currently being
updated is tagged as “new” with the rest designated as “old.” We can then rewrite
the Lagrange parameter updates using “old” and “new” values. Please note that
each Lagrange parameter update corresponds to one of the constraints in (2). It
can be shown that the iterative update of the Lagrange parameters is guaranteed
to converge to the unique solution of (2) [8]. While rewriting (12), we multiply the

left and right sides with e~ 22 (@),
2N (@) =229 (1) _

A (@) =A% @) =9l -1

> . o2 (@)l (x) i (zi,0) 05 (wl)w (w5)e”

M d(x;)—1

pii(za); (mi)e



Using (11), we relate each Lagrange parameter update with an update of p;;(z;, ;)
and p;(x;). We again invoke the “old” and “new” designations, this time on the
probabilities. From (11), (12) and (13), we write the joint probability update

pij™ (@i, ;) CABEW ()4 A% (1,
Ty = e A = (14)
Pij (zi, ;)
and for the marginal probability update
DI e -x ) (15)

P (i)

P (@i, wy) = pfit (2, ;)

() > pM (i, )
Zj

(16)
With the probability updates in place, we may write down new algorithms mini-
mizing the family of Bethe equivalent free energies using only probability updates.
The update equations (16) can be seen to satisfy the first constraint in (2). Similar
update equations can be derived for the other constraints in (2). For each Lagrange
parameter update, an equivalent, simultaneous probability (joint and marginal)
update can be derived similar to (16). The overall family of algorithms can be sum-
marized as shown in the pseudocode. Despite the unwieldy algebraic development
preceding it, the algorithm is very simple and straightforward.

Set free parameters ¢ € [0,1] and {&;}.
Initialize {p;;, pi}. Set {¢: = (1 —d)n;} and {r; =1 —n;&}.
Begin A: Outer Loop
oij(x;) — >, pij (@i, z;)
0ji(wi) = 3 g, Dij (i, ;)
pixi) — pi(wi)
pij(@iyx5) — 0% ()0l ()i (i, )05 ()05 (27)
pi(wi) — pi' (wi) i (x:)
Begin B: Inner Loop: Do B until %Zij:i>j[(zmj pij (@i, ;) —
pi(xi))? + (2., pig (i, x5) — pj(25))?] < Conr
Simultaneously update p;;(x;,z;) and p;(z;) below.

pi(zi)

ZI]- pij(zi,z;5)
pi(wi) — \/Pi(»’cz') 2 Pij (Tis 25)

Simultaneously update p;;(x;,z;) and p;(z;) below.

Pij (w5, 5) < pij(wi, 5)

p;i(x;)
o, Pid (@075)
pj(@;) — \/Pj(fcj) > e, Pij (@i, x5)
Normalize p;;(xi, ;).

Pij(%‘@j)
Py (@i ) pis(@iz;)
J

Dij(xi, ) — pij(xi, ;)

T;,T



End B
End A

In the above family of algorithms, the MIME algorithm corresponds to free param-
eter settings 6 = 1 and & = 0 which in turn lead to parameter settings ¢; = 0
and r; = 1. The Yuille [8] double loop algorithm corresponds to the free parameter
settings 0 = 0 and & = 0 which in turn leads to parameter settings ¢; = n; and
r; = 1. A crucial point is that the energy function for every valid parameter setting
is equivalent to the Bethe free energy provided constraint satisfaction is evact. The
inner loop constraint satisfaction threshold parameter ¢y, setting is very important
in this regard. We are obviously not restricted to the MIME parameter settings.
At this early stage of exploration of the inter-relationships between Bayesian belief
propagation and inference methods based in statistical physics [7], it is premature
to speculate regarding the “best” parameter settings for 6 and {&;}. Most likely,
the effectiveness of the algorithms will vary depending on the problem setting which
enters into the formulation via the link functions {v;;} and the singleton functions

{wi}.
5 Results

We implemented the family of algorithms in C++ and conducted tests on locally
connected 50 node graphs and binary state variables. The ;(x;) and v;; (z;, z;) are
of the form e and e where h; and h;j are drawn from uniform distributions
(in the interval [—1,1]). Provided the constraint satisfaction theshold parameter
cenr was set low enough, the algorithm (for 6 = 1 and other parameter settings
as described in Figure 1) exhibited monotonic convergence. Figure 2 shows the
number of inner loop iterations corresponding to different settings of the constraint
satisfaction threshold parameter. We also implemented the BBP algorithm and
empirically observed that it often did not converge for these graphs. These results
are quite preliminary and far more validation experiments are required. However,
they provide a proof of concept for our approach.

6 Conclusion

We began with the MIME principle and showed the equivalence of the MIME-
based free energy to the Bethe free energy assuming constraint satisfaction to be
exact. Then, we derived new decompositions of the Bethe free energy inspired
by the MIME principle, and driven by our belief that certain decompositions may
be more effective than others. We then derived a convergent algorithm for each
member in the family of MIME-based decompositions. It remains to be seen if the
MIME-based algorithms are efficient for a reasonable class of problems. While the
MIME-based algorithms derived here use closed-form solutions in the constraint
satisfaction inner loop, it may turn out that the inner loop is better handled using
preconditioned gradient-based descent algorithms. And it is important to explore
the inter-relationships between the convergent MIME-based descent algorithms and
other recent related approaches with interesting convergence properties [4, 5].
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Figure 1: MIME energy versus outer loop iteration: 50 node, local topology,
§ = 1. Constraint satisfaction threshold parameter cyy,, was set to (a) 1078 (b) 1074
(c) 1072

(b) ‘ o

Figure 2: Inner loop iterations versus outer loop: 50 node, local topology,
§ = 1. Constraint satisfaction threshold parameter c,, was set to (a) 1075 (b)
107 (c) 1072




