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Abstract 

We describe the g-factor, which relates probability distributions 
on image features to distributions on the images themselves. The 
g-factor depends only on our choice of features and lattice quanti­
zation and is independent of the training image data. We illustrate 
the importance of the g-factor by analyzing how the parameters of 
Markov Random Field (i.e. Gibbs or log-linear) probability models 
of images are learned from data by maximum likelihood estimation. 
In particular, we study homogeneous MRF models which learn im­
age distributions in terms of clique potentials corresponding to fea­
ture histogram statistics (d. Minimax Entropy Learning (MEL) 
by Zhu, Wu and Mumford 1997 [11]) . We first use our analysis 
of the g-factor to determine when the clique potentials decouple 
for different features . Second, we show that clique potentials can 
be computed analytically by approximating the g-factor. Third, 
we demonstrate a connection between this approximation and the 
Generalized Iterative Scaling algorithm (GIS), due to Darroch and 
Ratcliff 1972 [2], for calculating potentials. This connection en­
ables us to use GIS to improve our multinomial approximation, 
using Bethe-Kikuchi[8] approximations to simplify the GIS proce­
dure. We support our analysis by computer simulations. 

1 Introduction 

There has recently been a lot of interest in learning probability models for vision. 
The most common approach is to learn histograms of filter responses or, equiva­
lently, to learn probability distributions on features (see right panel of figure (1)). 
See, for example, [6], [5], [4]. (In this paper the features we are considering will be 
extracted from the image by filters - hence we use the terms "features" and "filters" 
synonymously. ) 



An alternative approach, however , is to learn probability distributions on the images 
themselves. The Minimax Entropy Learning (MEL) theory [11] uses the maximum 
entropy principle to learn MRF distributions in terms of clique potentials deter­
mined by the feature statistics (i.e. histograms of filter responses). (We note that 
the maximum entropy principle is equivalent to performing maximum likelihood es­
timation on an MRF whose form is determined by the choice of feature statistics.) 
When applied to texture modeling it gives a way to unify the filter based approaches 
(which are often very effective) with the MRF distribution approaches (which are 
theoretically attractive). 

) \ 

Figure 1: Distributions on images vs. distributions on features. Left and center 
panels show a natural image and its image gradient magnitude map, respectively. 
Right panel shows the empirical histogram (i.e. a distribution on a feature) of 
the image gradient across a dataset of natural images. This feature distribution 
can be used to create a MRF distribution over images[10]. This paper introduces 
the g-factor to examine connections between the distribution over images and the 
distribution over features. 

As we describe in this paper (see figure (1)), distributions on images and on fea­
tures can be related by a g-factor (such factors arise in statistical physics, see [3]) . 
Understanding the g-factor allows us to approximate it in a form that helps explain 
why the clique potentials learned by MEL take the form that they do as functions 
of the feature statistics. Moreover , the MEL clique potentials for different features 
often seem to be decoupled and the g-factor can explain why, and when, this occurs. 
(I.e. the two clique potentials corresponding to two features A and B are identical 
whether we learn them jointly or independently). 

The g-factor is determined only by the form of the features chosen and the spatial 
lattice and quantization of the image gray-levels. It is completely independent of 
the training image data. It should be stressed that the choice of image lattice, 
gray-level quantization and histogram quantization can make a big difference to the 
g-factor and hence to the probability distributions which are the output of MEL. 

In Section (2), we briefly review Minimax Entropy Learning. Section (3) introduces 
the g-factor and determines conditions for when clique potentials are decoupled. 
In Section (4) we describe a simple approximation which enables us to learn the 
clique potentials analytically, and in Section (5) we discuss connections between 
this approximation and the Generalized Iterative Scaling (GIS) algorithm. 

2 Minimax Entropy Learning 

Suppose we have training image data which we assume has been generated by an 
(unknown) probability distribution PT(X) where x represents an image. Minimax 
Entropy Learning (MEL) [11] approximates PT(X) by selecting the distribution with 



maximum entropy constrained by observed feature statistics i(X) = ;fobs. This gives 
- >:. ¢(£) - -

P(xIA) = e Z [>:] ,where A is a parameter chosen such that Lx P(xIA)¢>(X) = 'l/Jobs· 

Or equivalently, so that <910;{[>:] = ;fobs. 

We will treat the special case where the statistics i are the histogram of a shift­
invariant filter {fi(X) : i = 1, ... , N} , where N is the total number of pixels in the im­
age. So 'l/Ja = ¢>a(x) = -tv L~l ba,' i(X) where a = 1, ... , Q indicates the (quantized) 

~ ~ Q N 
filter response values. The potentials become A·¢>(X) = -tv La=l Li=l A(a)ba,fi(X) = 

-tv L~l A(fi(X)). Hence P(xl,X) becomes a MRF distribution with clique potentials 
given by A(fi (x)). This determines a Markov random field with the clique structure 
given by the filters {fd. 

MEL also has a feature selection stage based on Minimum Entropy to determine 
which features to use in the Maximum Entropy Principle. The features are evalu­
ated by computing the entropy - Lx P(xl,X) log P(xl,X) for each choice of features 
(with small entropies being preferred). A filter pursuit procedure was described to 
determine which filters/features should be considered (our approximations work for 
this also). 

3 The g-Factor 

This section defines the g-factor and starts investigating its properties in subsec­
tion (3.1). In particular, when, and why, do clique potentials decouple? More 
precisely, when do the potentials for filters A and B learned simultaneously differ 
from the potentials for the two filters when they are learned independently? 

We address these issues by introducing the g-factor g(;f) and the associated distri­
bution Po (;f): 

x space -----+ iii space 

GG 
g(ijiJ = number of images x 

with histogram iii 

(1) 

Figure 2: The g-factor g(;f) counts the number of images x that have statistics ;f. 
Note that the g-factor depends only on the choice of filters and is independent of 
the training image data. 

Here L is the number of grayscale levels of each pixel, so that LN is the total number 
of possible images. The g-factor is essentially a combinational factor which counts 
the number of ways that one can obtain statistics ;f, see figure (2). Equivalently, 
Po is the default distribution on ;f if the images are generated by white noise (i.e. 
completely random images). 



We can use the g-factor to compute the induced distribution P(~I'x) on the statistics 
determined by MEL: 

A ~ ~ L ~ ~ g( ~)eX.,j; ~ L ~ X,j; 
P(1/1 I'\) = 6;;: 2(-)P(xl'\) = ~, Z[,\] = g(1/1)e· . (2) 

X
- 'j','j' x Z[,\] 

,j; 

Observe that both P(~I'x) and log Z[,X] are sufficient for computing the parameters 
X. The ,X can be found by solving either of the following two (equivalent) equations: 

A ~ ~ ~ ~ 8 10 zrXl ~ 
L:,j; P(1/1 I,\) 1/1 = 1/1obs, or ;X = 1/1obs, which shows that knowledge of the g-factor 

and eX. ,j; are all that is required to do MEL. 

Observe from equation (2) that we have P(~I'x = 0) = Po(~) . In other words , 
setting ,X = 0 corresponds to a uniform distribution on the images x. 

3.1 Decoupling Filters 

We now derive an important property of the minimax entropy approach. As men­
tioned earlier, it often seems that the potentials for filters A and B decouple. 
In other words, if one applies MEL to two filters A, B simultaneously bv letting 

...... ....A ...... B...... ....A -B ...... "'""'A ...... B . :..tA ...... B 1/1 = (1/1 ,1/1 ), '\ = (,\ , '\ ), and 1/1obs = (1/1 obs ' 1/1 obs)' then the solutIOns'\ , '\ to 
the equations: 

LP(xl,XA , ,XB)(iA(x) , iB(x)) = (~:bs'~!s)' (3) 
x 

are the same (approximately) as the solutions to the equations L:x p(xl,XA )iA(x) = 

~!s and L:x P(xl,XB)iB(x) = ~!s, see figure (3) for an example. 

Figure 3: Evidence for decoupling of features. The left and right panels show the 
clique potentials learned for the features a I ax and a I ay respectively. The solid lines 
give the potentials when they are learned individually. The dashed lines show the 
potentials when they are learned simultaneously. Figure courtesy of Prof. Xiuwen 
Liu, Florida State University. 

We now show how this decoupling property arises naturally if the g-factor for the 
two filters factorizes. This factorization, of course, is a property only of the form 
of the statistics and is completely independent of whether the statistics of the two 
filters are dependent for the training data. 

Property I: Suppose we have two sufficient statistics iA(x), iB (x) which are in­
dependent on the lattice in the sense that g(~A,~B ) = gA (~A)gB(~B) , then 
logZ[,XA,,XB] = logZA[,XA] + logZB[,XB] and p(~A,~B ) = pA(~A)pB(~B ). 



This implies that the parameters XA, XB can be solved from the independent 
. 81ogZA[XA] _ -A 8 1ogZB[XB ] 

equatwns 8XA - 'ljJobs' 8XB 
_ -B A A -A -A -A 
- 'ljJobs or L.,j;A P ('ljJ)'ljJ = 'ljJobs' 

L. ,j;B pB(;fB );fB = ;f~s ' 

Moreover, the resulting distribution PUC) can be obtained by multiplying the distri­
butions (l/ZA)eXA .,j;A(x) and (l/ZB) eXB.,j;B(x) together. 

The point here is that the potential terms for the two statistics ;fA,;fB decouple if 
the phase factor g(;fA,;fB) can be factorized. We conjecture that this is effectively 
the case for many linear filters used in vision processing. For example, it is plausible 
that the g-factor for features 0/ ox and 0/ oy factorizes - and figure (3) shows 
that their clique potentials do decouple (approximately). Clearly, if factorization 
between filters occurs then it gives great simplification to the system. 

4 Approximating the g-factor for a Single Histogram 

We now consider the case where the statistic is a single histogram. Our aim is to 
understand why features whose histograms are of stereotypical shape give rise to 
potentials of the form given by figure (3). Our results , of course, can be directly 
extended to multiple histograms if the filters decouple, see subsection (3.1). We 
first describe the approximation and then discuss its relevance for filter pursuit. 

We rescale the X variables by N so that we have: 

eNX.¢(x) A _ _ eNX.,j; 
P(X'I-\) = Z[X] , P('ljJ I-\) = g('ljJ) Z[X] , (4) 

We now consider the approximation that the filter responses {Ii} are independent 
of each other when the images are uniformly distributed. This is the multinomial 
approximation. (We attempted a related approximation [1] which was less success­
ful.) It implies that we can express the phase factor as being proportional to a 
multinomial distribution: 

(nt:) LN N! N1/Jl N1/JQ n (nt:) _ N! N1/Jl N1/JQ 
9 <P = (N'ljJd!. .. (N'ljJQ)!o ... 0Q ' TO <p - (N'ljJd!. .. (N'ljJQ)!Ol "'OQ 

(5) 
where L.~= 1 'ljJa = 1 (by definition) and the {oa} are the means of the components 
Na } with respect to the distribution Po (;f). As we will describe later , the {oa} 
will be determined by the filters {fi}. See Coughlan and Yuille, in preparation, for 
details of how to compute the {oa}. 

This approximation enables us to calculate MEL analytically. 

Theorem With the multinomial approximation the log partition function is: 

Q 

log Z[X] = N log L + N log{~= e " a+1og aa } , (6) 
a=l 

and the "potentials" P a} can be solved in terms of the observed data {'ljJo bs ,a} to 
be: 

\ - I 'ljJobs,a Aa - og--, 
Oa 

a = 1, .. . ,Q. (7) 



Figure 4: Top row: the multinomial approximation. Bottom row: full implemen­
tation of MEL (see text). (Left panels) the potentials, (center panels) synthesized 
images, and (right panels) the difference between the observed histogram (dashed 
line) and the histogram of the synthesized images (bold line). Filters were d/dx 
and d/dy. 

We note that there is an ambiguity Aa r-+ Aa + K where K is an arbitrary number 
(recall that L~=l 'IjJ(a) = 1). We fix this ambiguity by setting X = 0 if a. = "Jobs. 

Proof. Direct calculation. 

Our simulation results show that this simple approximation gives the typical po­
tential forms generated by Markov Chain Monte Carlo (MCMC) algorithms for 
Minimax Entropy Learning. Compare the multinomial approximation results with 
those obtained from a full implementation of MEL by the algorithm used in [11], 
see figure (4). 

Filter pursuit is required to determine which filters carry most information. 
MEL [11] prefers filters (statistics) which give rise to low entropy distribu­
tions (this is the "Min" part of Minimax). The entropy is given by H(P) = 

- L x P(xIX) log P(xIX) = log Z[X] - L~=l Aa'IjJa · For the multinomial approxi­
mation this can be computed to be N log L - N L~=l 'ljJa log ~. This gives an 
intuitive interpretation of feature pursuit: we should prefer filters whose statistical 
response to the image training data is as large as possible from their responses to 
uniformly distributed images. This is measured by the Kullback-Leibler divergence 
L~=l 'ljJa log ~. Recall that if the multinomial approximation is used for multiple 
filters then we should simply add together the entropies of different filters. 



5 Connections to Generalized Iterative Scaling 

In this section we demonstrate a connection between the multinomial approxima­
tion and Generalized Iterative Scaling (GIS)[2]. GIS is an iterative procedure for 
calculating clique potentials that is guaranteed to converge to the maximum likeli­
hood values of the potentials given the desired empirical filter marginals (e.g. filter 
histograms). We show that estimating the potentials by the multinomial approx­
imation is equivalent to the estimate obtained after performing the first iteration 
of GIS. We also outline an efficient procedure that allows us to continue additional 
GIS iterations to improve upon the multinomial approximation. 

The GIS procedure calculates a sequence of distributions on the entire image 
(and is guaranteed to converge to the correct maximum likelihood distribu-

tion), with an update rule given by p(t+1)(x) ex P(O)(x)Il~=l{ :F; } <pa(x), where 

'lfJit ) =< <Pa(X) >P(t)(x) is the expected histogram for the distribution at time t. 
This implies that the corresponding clique potential update equation is given by: 
>.it +1) = >.it ) + log 'lfJ~bs - log 'lfJit ). 

If we initialize GIS so that the initial distribution is the uniform distribution, 
i.e. p(O) (x) = L -N, then the distribution after one iteration is p(1) (x) ex 

e2::a <Pa(X) log (1j;~bs /aa) . In other words, the distribution after one iteration is the 
MEL distribution with clique potential given by the multinomial approximation. 
(The result can be adapted to the case of multiple filters, as explained in Coughlan 
and Yuille, in preparation.) 

We can iterate GIS to improve the estimate of the clique potentials beyond the 
accuracy of the multinomial approximation. The main difficulty lies in estimating 
'lfJit ) for t > 0 (at t = 0 this expectation is just the mean histogram with respect 
to the uniform distribution, <l:a, which may be calculated efficiently as described in 
Coughlan and Yuille, in preparation). One way to approximate these expectations is 
to apply a Bethe-Kikuchi approximation technique [8], used for estimating marginals 
on Markov Random Fields, to our MEL distribution. Our technique, which was 
inspired by the Unified Propagation and Scaling Algorithm [7], consists of writing 
the Bethe free energy [8] for our 2-d image lattice, simplifying it using the shift 
invariance of the lattice (which enables the algorithm to run swiftly), and using the 
Convex-Concave Procedure (CCCP) [9] procedure to obtain an iterative update 
equation to estimate the histogram expectations. The GIS algorithm is then run 
using these histogram expectations (the results were accurate and did not improve 
appreciably by using the higher-order Kikuchi free energy approximation). See 
Coughlan and Yuille, in preparation, for details of this procedure. 

6 Discussion 

This paper describes the g-factor, which depends on the lattice and quantization 
and is independent of the training image data. Alternatively it can be thought of as 
being proportional to the distribution of feature responses when the input images 
are uniformly distributed. 

We showed that the g-factor can be used to relate probability distributions on 
features to distributions on images. In particular, we described approximations 



which, when valid, enable MEL to be computed analytically. In addition, we can 
determine when the clique potentials for features decouple, and evaluate how infor­
mative each feature is . Finally, we establish a connection between the multinomial 
approximation and GIS, and outline an efficient procedure based on Bethe-Kikuchi 
approximations that allows us to continue additional GIS iterations to improve upon 
the multinomial approximation. 
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