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Abstract 

Multisensory response enhancement (MRE) is the augmentation of 
the response of a neuron to sensory input of one modality by si­
multaneous input from another modality. The maximum likelihood 
(ML) model presented here modifies the Bayesian model for MRE 
(Anastasio et al.) by incorporating a decision strategy to maximize 
the number of correct decisions. Thus the ML model can also deal 
with the important tasks of stimulus discrimination and identifi­
cation in the presence of incongruent visual and auditory cues. It 
accounts for the inverse effectiveness observed in neurophysiolog­
ical recording data, and it predicts a functional relation between 
uni- and bimodal levels of discriminability that is testable both in 
neurophysiological and behavioral experiments. 

1 Introduction 

In a typical environment stimuli occur at various positions in space and time. In 
order to produce a coherent assessment of the external world an individual must 
constantly discriminate between signals relevant for action planning (targets) and 
signals that need no immediate response (distractors). Separate sensory channels 
process stimuli by modality, but an individual must determine which stimuli are 
related to one another, i.e., it is must construct a perceptual event by integrating 
information from several modalities. For example, stimuli that occur at the same 
time and space are likely to be interrelated by a common cause. However , if the 
visual and auditory cues are incongruent, e.g., when dubbing one syllable onto 
a movie showing a person mouthing a different syllable, listeners typically report 
hearing a third syllable that represents a combination of what was seen and heard 
(McGurk effect, cf. [1]). This indicates that cross-modal synthesis is particularly 
important for stimulus identification and discrimination, not only for detection. 

Evidence for multisensory integration at the neural level has been well documented 
in a series of studies in the mammalian midbrain by Stein, Meredith and Wallace 
(e.g., [2] ; for a review, see [3]). The deep layers of the superior colliculus (DSC) 
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integrate multisensory input and trigger orienting responses toward salient targets. 
Individual DSC neurons can receive inputs from multiple sensory modalities (visual, 
auditory, and somatosensory), there is considerable overlap between the receptive 
fields of these individual multisensory neurons, and the number of neural impulses 
evoked depends on the spatial and temporal relationships of the multisensory stim­
uli. 

Multisensory response enhancement refers to the augmentation of the response of 
a DSC neuron to a multisensory stimulus compared to the response elicited by 
the most effective single modality stimulus. A quantitative measure of the percent 
enhancement is 

MRE = CM - SMmax x 100, 
SMmax 

(1) 

where CM is the mean number of impulses evoked by the combined-modality stim­
ulus in a given time interval, and S Mmax refers to the response of the most effective 
single-modality stimulus (cf. [4]). Response enhancement in the DSC neurons can 
be quite impressive, with values of M RE sometimes reaching values above 1000. 
Typically, this enhancement is most dramatic when the unimodal stimuli are weak 
and/or ambiguous, a principle referred to in [4] as "inverse effectiveness" . 

Since DSC neurons play an important role in orienting responses (like eye and 
head movements) to exogenous target stimuli, it is not surprising that multisensory 
enhancement is also observed at the behavioral level in terms of, for example, a 
lowering of detection thresholds or a speed-up of (saccadic) reaction time (e.g., 
[5], [6], [7]; see [8] for a review) . Inverse effectiveness makes intuitive sense in the 
behavioral situation: the detection probability for a weak or ambiguous stimulus 
gains more from response enhancement by multisensory integration than a high­
intensity stimulus that is easily detected by a single modality alone. 

A model of the functional significance of multisensory enhancement has recently 
been proposed by Anastasio, Patton, and Belkacem-Boussaid [9]. They suggested 
that the responses of individual DSC neurons are proportional to the Bayesian 
probability that a target is present given their sensory inputs. Here, this Bayesian 
model is extended to yield a more complete account of the decision situation an 
organism is faced with. As noted above, in a natural environment an individual is 
confronted with the task of discriminating between stimuli important for survival 
(" targets") and stimuli that are irrelevant (" distractors") . Thus, an organism must 
not only keep up a high rate of detecting targets but, at the same time, must strive 
to minimize " false alarms" to irrelevant stimuli. An optimally adapted system will 
be one that maximizes the number of correct decisions. It will be shown here that 
this can be achieved already at the level of individual DSC neurons by appealing 
to a maximum-likelihood principle, without requiring any more information than is 
assumed in the Bayesian model. 

The next section sketches the Bayesian model by Anastasio, Patton, and Belkacem­
Boussaid (Bayesian model, for short), after which a maximum-likelihood model of 
multisensory response enhancement will be introduced. 

2 The Bayesian Model of Multisensory Enhancement 

DSC neurons receive input from the visual and auditory systems elicited by stimuli 
occurring within their receptive fields! According to the Bayesian model, these vi-
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sual and auditory inputs are represented by random variables V and A, respectively. 
A binary random variable T indicates whether a signal is present (T = 1) or not 
(T = 0) . The central assumption of the model is that a DSC neuron computes the 
Bayesian (posterior) probability that a target is present in its receptive field given 
its sensory input: 

P(T = I V = A = ) = P(V = v, A = a I T = I)P(T = 1) 
1 v, a P(V = v, A = a) , (2) 

where v and a denote specific values of the sensory input variables. Analogous 
expressions hold for the two unimodal situations. The response of the DSC neuron 
(number of spikes in a unit time interval) is postulated to be proportional to these 
probabilities. 

In order to arrive at quantitative predictions two more specific assumptions are 
made: 

(1) the distributions of V and A, given T = 1 or T = 0, are conditionally indepen­
dent , i.e., 

P(V = v, A = a I T) = P(V = v IT) P(A = a I T) 

for any v, a; 

(2) the distribution of V , given T = 1 or T = 0, is Poisson with Al or Ao , resp. , 
and the distribution of A, given T = 1 or T = 0, is Poisson with {-tl or {-to, 
resp. 

The conditional independence assumption means that the visibility of a target in­
dicates nothing about its audibility, and vice-versa. The choice of the Poisson 
distribution is seen as a reasonable first approximation that requires only one single 
parameter per distribution. Finally, the computation of the posterior probability 
that a target is present requires specification of the a-priori probability of a target, 
P(T = 1). 

The parameters Ao and {-to denote the mean intensity of the visual and auditory 
input, resp., when no target is present (spontaneous input) , while Al and {-tl are 
the corresponding mean intensities when a target is present (driven input). By an 
appropriate choice of parameter values, Anastasio et al. [9] show that the Bayesian 
model reproduces values of multisensory response enhancement in the order of mag­
nitude observed in neurophysiological experiments [10]. In particular, the property 
of inverse effectiveness, by which the enhancement is largest for combined stimuli 
that evoke only small unimodal responses , is reflected by the model. 

3 The Maximum Likelihood Model of Multisensory 
Enhancement 

3.1 The decision rule 

The maximum likelihood model (ML model, for short) incorporates the basic deci­
sion problem an organism is faced with in a typical environment: to discriminate 
between relevant stimuli (targets), i.e. , signals that require immediate reaction, and 
irrelevant stimuli (distractors), i.e., signals that can be ignored in a given situa­
tion. In the signal-detection theory framework (cf. [11]) , P(Yes I T = 1) denotes the 
probability that the organism (correctly) decides that a target is present (hit), while 
P(Yes I T = 0) denotes the probability of deciding that a target is present when in 



fact only a distractor is present (false alarm). In order to maximize the probability 
of a correct response, 

P(C) = P(Yes I T = 1) P(T = 1) + [1- P(Yes I T = O)]P(T = 0), (3) 

the following maximum likelihood decision rule must be adopted (cf. [12]) for , e.g., 
the unimodal visual case: 

If P(T = 11 V = v) > P(T = 0 I V = v), then decide "Yes", otherwise decide " No" . 

The above inequality is equivalent to 

P(T=IIV=v) P(T=I)P(v=vIT=I) 
P(T = 0 I V = v) P(T = 0) P(V = v IT = 0) > 1, 

where the right-most ratio is a function of V , L(V), the likelihood ratio. Thus, the 
above rule is equivalent to: 

If L(v) > 1 - P then decide "Yes" otherwise decide "No" , , , 
P 

with p = P(T = 1). 

Since L(V) is a random variable, the probability to decide "Yes" , given a target is 
present , is 

P (Yes I T = 1) = P (L(V) > 1; PIT = 1) . 

Assuming Poisson distributions, this equals 

with 

P (exP(Ao - Ad U~) v > ~ I T = 1) 
= P(V > ciT = 1), 

In (l;P) + Al - AO 
c=---'--------'-----;-----;---

In U~) 
In analogy to the Bayesian model, the ML model postulates that the response 
of a DSC neuron (number of spikes in a unit time interval) to a given target is 
proportional to the probability to decide that a target is present computed under 
the optimal (maximum likelihood) strategy defined above. 

3.2 Predictions for Hit Probabilities 

In order to compare the predictions of the ML model for unimodal vs. bimodal 
inputs, consider the likelihood ratio for bimodal Poisson input under conditional 
independence: 

L(V, A) P(V = v, A = a I T = 1) 
P(V = v, A = a I T = 0) 

exp(Ao _ Ad (~~) v exp(po _ pd (~~) A 

The probability to decide "Yes" given bimodal input amounts to, after taking log­
arithms, 

P (In (~~) V + In (~~) A > In (1; p) + Al - AO + PI - Po IT = 1) 



Table 1: Hit probabilities and MRE for different bimodal inputs 

Mean Driven Input Prob (Hit) 

Al J.Ll V Driven A Driven V A Driven MRE 

Low 6 7 .000 .027 .046 704 
7 7 .027 .027 .117 335 
8 8 .112 .112 .341 204 
8 9 .112 .294 .528 79 
8 10 .112 .430 .562 31 

Medium 12 12 .652 .652 .872 33 
12 13 .652 .748 .895 20 

High 16 16 .873 .873 .984 13 
16 20 .873 .961 .990 3 

Note: A-priori target probability is set at p = O.l. Visual and auditory inputs have 
spontaneous means of 5 impulses per unit time. V Driven (A Driven, V A Driven) columns 
refer to the hit probabilities given a unimodal visual (resp. auditory, bimodal) target . 
Multisensory response enhancement (last column) is computed using Eq. (1) 

For Ad Ao = J.Ld J.Lo this probability is computed directly from the Poisson distri­
bution with mean (AI + J.Ld. Otherwise, hit probabilities follow the distribution 
of a linear combination of two Poisson distributed variables. Table 1 presents2 hit 
probabilities and multisensory response enhancement values for different levels of 
mean driven input. Obviously, the ML model imitates the inverse effectiveness re­
lation: combining weak intensity unimodal stimuli leads to a much larger response 
enhancement than medium or high intensity stimuli. 

3.3 Predictions for discriminability measures 

The ML model allows to assess the sensitivity of an individual DSC neuron to dis­
criminate between target and distract or signals. Intuit ively, this sensitivity should 
be a (decreasing) function of the amount of overlap between the driven and the 
spontaneous likelihood (e.g., P(V = v IT = 1) and P(V = v I T = 0)). One possible 
appropriate measure of sensitivity for the Poisson observer is (cf. [12]) 

Al - Ao J.Ll - J.Lo 
Dy = (AI AO)I /4 and DA = (J.LIJ.LO)l /4 (4) 

for the visual and auditory unimodal inputs, resp. A natural choice for the bimodal 
measure of sensitivity then is 

D (AI + J.Ll) - (J.Lo + Ao) 
y A = [(A I + J.Ld(Ao + J.Lo)Jl /4 . 

(5) 

Note that, unlike the hit probabilities, the relative increase in discriminability by 
combining two unimodal inputs does not decrease with the intensity of the driven 
input (see Table 2). Rather, the relation between bimodal and unimodal discrim­
inability measures for the input values in Table 2 is approximately of Euclidean 

2For input combinations with >'1 =I- J.t1 hit probabilities are estimated from samples of 
1,000 pseudo-random numbers. 



Table 2: Discriminability measure values and % increase for different bimodal inputs 

Mean Driven Input Discriminability Value 

Al J.Ll Dv DA DVA % Increase 

7 7 .82 .82 1.16 41 
8 8 1.19 1.19 1.69 41 
8 10 1.19 1.88 2.18 16 

12 12 2.52 2.52 3.57 41 
16 16 3.68 3.68 5.20 41 
16 20 3.68 4.74 5.97 26 

Note: Visual and auditory inputs have spontaneous means of 5 impulses per unit time. 
% Increase of Dv A over Dv and DA (last column) is computed in analogy to Eq. (1) 

distance form: 

(6) 

For Al = J.Ll this amounts to Dv A = V2Dv yielding the 41 % increase in discrim­
inability. The fact that the discriminability measures do not follow the inverse 
effectiveness rule should not be not surprising: whether two stimuli are easy or 
hard to discriminate depends on their signal-to-noise ratio, but not on the level of 
intensity. 

4 Discussion and Conclusion 

The maximum likelihood model of multisensory enhancement developed here as­
sumes that the response of a DSC neuron to a target stimulus is proportional to 
the hit probability under a maximum likelihood decision strategy. Obviously, no 
claim is made here that the neuron actually performs these computations, only that 
its behavior can be described approximately in this way. Similar to the Bayesian 
model suggested by Anastasio et al. [9], the neuron's behavior is solely based on 
the a-priori probability of a target and the likelihood function for the different 
sensory inputs. The ML model predicts the inverse effectiveness observed in neu­
rophysiological experiments. Moreover, the model allows to derive a measure of 
the neuron's ability to discriminate between targets and non-targets. It makes spe­
cific predictions how un i- and bimodal discriminability measures are related and, 
thereby, opens up further avenues for testing the model assumptions . 

The ML model, like the Bayesian model, operates at the level of a single DSC 
neuron. However, an extension of the model to describe multisensory population 
responses is desirable: First, this would allow to relate the model predictions to 
numerous behavioral studies about multisensory effects (e.g., [13], [14]), and, second, 
as a recent study by Kadunce et al. [15) suggests, the effects of multisensory 
spatial coincidence observed in behavioral experiments may only be reconcilable 
with the degree of spatial resolution achievable by a population of DSC neurons 
with overlapping receptive fields. Moreover, this extension might also be useful to 
relate behavioral and single-unit recording results to recent findings on multisensory 
brain areas using functional imaging techniques (e.g., King and Calvert [16]). 
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