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Pairwise data in empirical sciences typically violate metricity, ei­
ther due to noise or due to fallible estimates, and therefore are 
hard to analyze by conventional machine learning technology. In 
this paper we therefore study ways to work around this problem. 
First, we present an alternative embedding to multi-dimensional 
scaling (MDS) that allows us to apply a variety of classical ma­
chine learning and signal processing algorithms. The class of pair­
wise grouping algorithms which share the shift-invariance property 
is statistically invariant under this embedding procedure, leading 
to identical assignments of objects to clusters. Based on this new 
vectorial representation, denoising methods are applied in a sec­
ond step. Both steps provide a theoretically well controlled setup 
to translate from pairwise data to the respective denoised met­
ric representation. We demonstrate the practical usefulness of our 
theoretical reasoning by discovering structure in protein sequence 
data bases, visibly improving performance upon existing automatic 
methods. 

1 Introduction 

Unsupervised grouping or clustering aims at extracting hidden structure from data 
(see e.g. [5]). However , for several major applications, e.g. bioinformatics or imag­
ing, the data is solely available as scores of pairwise comparisons. Pairwise data is 
in no natural way related to the common viewpoint of objects lying in some "well 
behaved" space like a vector space. Particularly, pairwise data may violate the tri­
angular inequality. Two cases should be distinguished: (i) The triangle inequality 
might not be satisfied as a result of noisy measurements (for instance using string 
alignment algorithms in DNA analysis). (ii) The violation might be an intrinsic 
feature of the data. This case, for instance, applies to datasets based upon some 
human judgment, e.g. "X likes Y, Y likes Z =I? X likes Z". 



Such violations preclude the use of well established machine learning methods, which 
typically have been formulated for metric data only. This paper proposes an algo­
rithm to metricize and subsequently de noise pairwise data. It uses the so-called 
constant shift embedding (cf. [14]) for metrization, then constructs a positive semi­
definite matrix which can in sequel be used for denoising and clustering purposes. 
Regarding data-mining or clustering purposes, the most outstanding difference to 
classical MDS is the following: for the class of pairwise clustering cost functions 
sharing the shift-invariance property1 the metrization step is loss-free in the sense 
that the optimal assignments of objects to clusters remain unchanged. 

The next section introduces techniques for metrization, denoising and clustering 
pairwise data. This is followed by a section illustrating our methods for real world 
data such as bacterial GyrE amino acid sequences and sequences from the ProD om 
data base and a brief discussion. 

2 Proximity-based clustering and denoising 

One of the most popular methods for grouping vectorial data is k-means clustering 
(see e.g. [1][5]). It derives a set of k prototype vectors which quantize the data set 
with minimal quantization error. 

Partitioning proximity data is considered a much harder problem, since the inherent 
structure of n samples is hidden in n2 pairwise relations. The pairwise proximities 
can violate the requirements of a distance measure, i.e. they may be non-symmetric 
and negative, and the triangular inequality does not necessarily hold. Thus, a loss­
free embedding into a vector space is not possible, so that grouping problems of this 
kind cannot be directly transformed into a vectorial representation by means of clas­
sical embedding strategies such as multi-dimensional scaling (MDS [4]). Moreover 
clustering the MDS embedded data-vectors in general yields partitionings differ­
ent from those obtained by directly solving the pairwise problem, since embedding 
constraints might be in conflict with the clustering goal. 

Let us start from a pairwise clustering loss function (see [12]) that combines the 
properties of additivity, scale- and shift invariance, and statistical robustness 

HPc = t 2:~=1 2:7=1 MivMjvDij 

v=1 2:~= 1 Mlv ' 
(1) 

where the data are characterized by the matrix of pairwise dissimilarities D ij . 
The assignments of objects to clusters are encoded in the binary stochastic ma-
trix M E {O, l}nxk : 2:~=1 Miv = 1. For such cost functions it can be shown [14] 
that there always exists a set of vectorial data representations-the constant shift 
embeddings-such that the grouping problem can be equivalently restated in terms 
of Euclidian distances between these vectors. In order to handle non-symmetric 
dissimilarities, it should be noticed that HPc is also invariant under symmetriz­
ing transformations: Dij +- 1/2(Dij + Dji). In the following we will thus restrict 
ourselves to the case of symmetric dissimilarity matrices. 

Theorem 2.1. [141 Given an arbitrary (possibly non-metric) (n x n) dissimilarity 
matrix D with zero self-dissimilarities, there exists a transformed matrix fJ such 
that 
(i) the matrix fJ can be interpreted as a matrix of squared Euclidian distances 

IThe term shift-invariance means that the optimal assignments of objects to clusters 
are not influenced by constant additive shifts of the pairwise dissimilarities (excluding the 
self-dissimilarities which are assumed to be zero). 



between a set of vectors {xdi=l' D is derived from D by both symmetrizing and 
applying the constant shift embedding trick; 
(ii) the original pairwise clustering problem is equivalent to a k-means problem in 
this vector space, in the sense that the optimal assignments of objects to clusters 
{MiV } are identical in both problems. 

A re-formulation of pairwise clustering as a k-means problem is clearly advanta­
geous: (i) the availability of prototype vectors defines a generic rule for using the 
learned partitioning in a predictive sense, (ii) we can apply standard noise- and 
dimensionality-reduction methods in order to both stabilize the estimation proce­
dure and to speed up the grouping itself. 

Constant shift embedding Let D = (Dij) E jRnxn be the matrix of pairwise 
squared dissimilarities between n objects. For a generic noisy dataset yfJ5:j 1:. 
JDik + JDkj so that v15 is non metric. Since";-: is monotonically increasing, 
~ Do such that JDij + Do ~ JDik + Do + JDkj + Do V i,j, k = 1,2 ... n. Let 

D=D+Do(eeT -In) (2) 

where e = (1 , 1, ... 1) T is a n-dimensional column-vector and In the identity matrix. 
This corresponds to a constant additive shift Dij = Dij + Do for all i i:- j. We 
look for the minimal constant shift Do such that D satisfy the triangle inequality. 
In order to make the main result clear, we first need to introduce the notion of a 
centralized matrix. Let P be an arbitrary matrix and let Q = I - ~ee T. Q is the 
projection matrix on the orthogonal complement of e. Define the centralized P by: 

pe = QPQ. (3) 

Let D be fixed and let us decompose D as follows: 

Dij = Sii + Sjj - 2Sij . (4) 

This decomposition is motivated by the fact that if D is a squared Euclidian distance 
between the vectorial data Xi, then Dij = Ilxi - xjl12 = IIxil12 + IIxjl12 - 2x{ Xj' 
It follows from equation (4) that a constant off-diagonal shift on D corresponds to 
a constant shift on the diagonal of S. S is not fixed by the choice of D, since we 
may always change its diagonal elements, yet recover the same D. That is , any 
matrix of the form (Sij + I/2~Si + I/2~Sj) gives the same distance D as S for 
arbitrary ~Si's. By simple algebra it can be shown that se = - ~ De, i. e. se is 
unique. Furthermore D derives from a squared Euclidian distance if and only if s e 
is positive semi-definite [14]. Let s e = s e - An(se)In, where AnU is the minimal 
eigenvalue of its argument. Then se is positive semi-definite [14]. These are the 
main ingredients for proving the following: 

Theorem 2.2 (Minimal Do). !4J. Do = -2An(se) is the minimal constant such 
that D = D + Do (ee T - In) derive from squared Euclidian distance. 

All proofs can be found in [14] . We have thus shown that applying large enough 
additive shifts to the off-diagonal elements of D results in a matrix se that is posi­
tive semi-definite, and can thus be interpreted as a Gram matrix. This means, that 
in some (n - I)-dimensional Euclidian space there exists a vector representation of 
the objects, summarized in the "design" matrix X (the rows of X are the feature 
vectors), such that se = XXT. 
For the pairwise clustering cost function the optimal assignments of objects to 
clusters are invariant under the constant-shift embedding procedure, according to 



theorem 2.1. Hence, the grouping problem can be re-formulated as optimizing the 
classical k-means criterion in the embedding space. 
In many applications, however, it is advantageous not to cluster in the full space 
but to insert some dimension reduction step, that serves the purpose of increasing 
efficiency and noise reduction. While it is unclear how to denoise for the original 
pairwise object representations while respecting additivity, scale- and shift invari­
ance, and statistical robustness properties of the clustering criterion, we can easily 
apply kernel PCA [16] to Be after the constant-shift embedding. 

Denoising of pairwise data by Constant Shift Embedding For de noising 
we construct D which derives from "real" points in a vector space, i.e. Be is positive 
semi-definite. In a first step, we briefly describe, how these real points can be 
recovered by loss-free kernel PCA [16]: 
(i) Calculate the centralized kernel matrix se = -~QDQ . 
(ii) Decompose se = V A VT where V = (Vl,'" vn ) with eigenvectors vi's and 
A = diag(.A1 , '" .An) with eigenvalues .A1 ~ ... ~ .Ap > .Ap+1 = a ~ .Ap+2 ~ ... ~ .An. 
(iii) Calculate the n x (n - 2) mapping matrix X~_2 = V':_2 (A~_2)1/2, where 
V':_2 = (V1, ... Vp ,Vp+2,··· vn-d and A~_2 = diag(.A1 - .An, ... .Ap - .An ,.Ap+2-
.An,'" .An-1 - .An) (these are the constantly shifted eigenvalues). 

The rows of X~_2 contain the vectors {xD (i = 1,2 ... n) in n - 2 dimensional 
space, whose mutual distances are given by D. When focusing on noise reduction, 
however, we are rather interested in some approximative reconstructions of the ''real'' 
vectors. In the PCA framework, one usually discards the directions which corre­
spond to small eigenvalues as noise (c.f. [9]). We can thus obtain a representation 
in a space of reduced dimension (with the well-defined error of PCA reconstruction) 
when choosing t < n - 2 in step (iii) of the above algorithm: 

X* - y.*(A*)1/2 t - t t , 

where i't* consists of the first t column vectors of V':_2 and At is the top txt 
submatrix of A~_2' The vectors in ~t then differ the least from the vectors in ~n-2 
in the sense of a quadratic error. 
The advantages of this method in comparison to directly applying classical scaling 
via MDS are: (i) t can be larger than the number p of positive eigenvalues, (ii) 
the embedded vectors are the best least squares error approximation to the optimal 
vectors which preserve the grouping structure. 
It should be noticed, however, that given the exactly reconstructed vectors in ~n-2 
found by loss-free kernel PCA, we could have also applied any other standard meth­
ods for dimensionality reduction or visualization, such as projection pursuit [6], local 
linear embedding (LLE) [15], Isomap [17] or Self-organizing maps [8]. 

3 Application on protein sequences 

3.1 Bacterial GyrB amino acid sequences 

We first illustrate our de noising technique on the gyrase subunit B. The dataset con­
sists of 84 amino acid sequences from five genera in Actinobacteria: 1: Corynebac­
terium, 2: Mycobacterium, 3: Gordonia, 4: Nocardia and 5: Rhodococcus. A de­
tailed description can be found in [7]. This dataset was used in [18] for illustration 
of marginalized kernels. The authors hinted at the possibility of computing the dis­
tance matrix by using BLAST scores [2], noting, however, that these scores could 
not be converted into positive semidefinite kernels. 



In our experiment, the sequences have been aligned by the Smith-Waterman algo­
rithm [11] which yields pairwise alignment scores. Using constant shift embedding 
a positive semidefinite kernel is obtained, leaving the cluster assignment unchanged 
for shift invariant cost functions. 
The important step is the denoising. Several projections to lower dimensions have 
been tested and t = 5 turned out to be a good choice, eliminating the bulk of noise 
while retaining the essential cluster structure. 
Figure 1 shows the striking improvement of the distance matrix after denoising. 
On the left hand side the ideal distance matrix is depicted, consisting solely of O's 
(black) and l 's (white), reflecting the true cluster membership. In the middle and 
on the right the original and the denoised distance matrix are shown, respectively. 
Denoising visibly accentuates the cluster structure in the pairwise data. Since we 
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Figure 1: Distance matrix: On the left the ideal distance matrix reflects the true 
cluster structure. In the middle and on the right: distance matrix before and after 
de noising 

dispose of the true labels, we can quantitatively assess the improvement by de­
noising. We performed usual k-means clustering, followed by a majority voting 
to match cluster labeling. For the denoised data we obtained 3 misclassifications 
(3.61%) whereas we got 17 (20.48%) for the original data. This simple experiment 
corroborates the usefulness of our embedding and denoising strategy for pairwise 
data. 

In order to fulfill the spirit of the theory of constant-shift embedding, the cost­
function of the data-mining algorithm subsequent to the embedding needs to be 
shift invariant. We may by the same token go a step further and apply algorithms 
for which this condition does not hold. In doing so, however, we give up the math­
ematical traceability of the error. 
To illustrate that denoised pairwise data can act as standalone quality data inde­
pendent of the framework of algorithms based on shift invariant cost functions (and 
in order to compare to the results obtained in [18]), a linear SVM is trained on 25% 
of the total data to mutually classify the genera-pairs: 3 - 4, 3 - 5, 4 - 5. Genera 1 
and 2 separate errorless and have therefore been omitted. Model selection over the 
regularization parameter C has been performed by choosing the optimal value out 
of 10 equally spaced values from [10-4, 102]. The results and have been averaged 
by a lOOO-fold sampling (cf. table 1). The best values are printed in bold. 

For the classification of genera 3 - 5 and 4 - 5 we obtain a substantial improve­
ment by denoising. Interestingly this is not the case for genera 3 - 4 which may 
be due to the elimination of discriminative features by the de noising procedure. 
The error still is significantly smaller than the error obtained by MCK2 and FK, 
which is in agreement with the superiority of a structure preserving embedding of 
Smith-Waterman scores even when left undenoised: FK and MCK are kernels de-



Genera 
3 - 4 
3-5 
4-5 

FK 
10.4 
10.9 
23.1 

MCK2 
8.48 
5.71 
11.6 

Undenoised 
5.06 
5.72 
7.55 

Denoised 
5.43 
3.83 
3.17 

Table 1: Comparison of mean test-error of supervised classification by linear SVM 
of genera with training sample 25 % of the total sample. The results for MCK2 
(Marginalized Count Kernel) and FK (Fisher Kernel) is obtained by kernel Fisher 
discriminant analysis which compares favorably to the SVM in several benchmarks 
[18]. 

rived from a generative model, whereas the alignment scores are obtained from a 
matching algorithm specifically tuned for protein sequences, reflecting much better 
the underlying structure of protein data. 

3.2 Clustering of ProDom sequences 

The analysis described in this section aims at finding a partition of domain sequences 
from the ProDom database, [3], that is meaningful w.r.t. structural similarity. In 
order to measure the quality of the grouping solution, we use the computed solution 
in a predictive way to assign group labels to SCOP sequences, which have been 
labeled by experts according to their structure, [10]. The predicted labels are then 
compared with the "true" SCOP labels. 

For demonstration purposes, we select the following subset of sequences from 
prodom2001. 2. srs: among all sequences we choose those which are highly simi­
lar to at least one sequence contained in the first four folds of the SCOP database. 2 

Between these sequences, we compute pairwise (length-corrected and standardized) 
Smith-Waterman alignment scores, summarized in the matrix (Sij). These similar­
ities are transformed into dissimilarities by setting Dij := Sii + Sjj - 2Sij . The 
centralized score matrix SC = -1/2Dc possesses some highly negative eigenvalues, 
indicating that metric properties are violated. Applying the constant-shift embed­
ding method, a valid Mercer kernel is derived, with an eigenvalue spectrum that 
shows only a few dominating components over a broad "noise"-spectrum (see figure 
2). Extracting the first 16 leading principal components3 leads to a vector repre­
sentation of the sequences as points in ~16. These points are then clustered by 
minimizing the k-means cost function within a deterministic annealing framework. 
The model order was selected by applying a re-sampling based stability analysis, 
which has been demonstrated to be a suitable model order selection criterion for 
unsupervised grouping problems in [13]. 

In order to measure the quality of the grouping solution, all 1158 SCOP sequences 
from the first four folds are embedded into the 16-dimensional space. The predicted 
group structure on this test set is then compared with the true SCOP fold-labels. 
Figure 3 shows both the predicted group membership of these sequences and their 
true SCOP fold-label in the form of a bar diagram: the sequences are ordered by 
increasing group label (the lower horizontal bar), and compared with the true fold 
classification (upper bar) . In order to quantify the results, the inferred clusters are 

2"Highly similar" here means that the highest alignment score exceeds a predefined 
threshold. The result is a subset of roughly 2700 ProD om domain sequences. 

3Subsampling techniques or deflation can be used to reduce computational load for 
large-scale problems. We only used a subset of 800 randomly chosen proteins for estimating 
the 16 leading eigenvectors. 
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Figure 2: (Partial) eigenvalue spec­
trum of the shifted score matrix. The 
data are projected onto the first leading 
16 eigenvectors, whereas the remaining 
principal components are considered to 
be dominated by noise. 
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re-Iabeled (''re-colored'') according to the maximum number of correctly identifiable 
fold-labels. This procedure allows us to correctly identify the fold label of roughly 
94 % of the SCOP sequences. 

1158 SCOP sequences from folds 1-4 

~1==::j1"1 -------~I ~I(=~~~II-.... ~I I SCOP fold label 
r=11+1. =1 ~II ___ ..... _IIIIIIJI ~I(==:_-~I II Prediction 

1 
re- Iabeled by 
majority voting 

Cluster I Cluster 3 ... Errors 
Cluster 2 

Figure 3: Visualization of cluster membership of the SCOP sequences contained in 
folds 1-4. 

Despite this surprisingly high percentage, it is necessary to deeper analyze the 
biological relevance of the inferred grouping solution. In order to check to what 
extent the above "over-all" result is influenced by artefacts due to highly related 
(or even almost identical) SCOP sequences, we repeated the analysis based on 
the subset of 128 SCOP sequences with less than 50 % sequence identity (PDB-
50). Predicting the group membership of these 128 sequences and using the same 
re-Iabeling approach, we can correctly identify 86 % of the fold-labels. This result 
demonstrates that we have not only found trivial groups of almost identical proteins, 
but that we have indeed extracted relevant structural information. 

4 Discussion and Conclusion 

This paper provides two main contributions that are highly useful when analyzing 
pairwise data. First , we employ the concept of constant shift embedding to provide 
a metric representation of the data. For a certain class of grouping principles sharing 
a shift-invariance property, this embedding is distortion-less in the sense that it does 
not influence the optimal assignments of objects to groups. Given the metricized 
data we can now use common signal (pre- )processing and denoising techniques that 
are typically only defined for vectorial data. 

As we investigate the clustering of protein sequences from data bases like GyrB and 
ProDom, we are given non-metric pairwise proximity information that is strongly 
deteriorated by the shortcomings of the available alignment procedures. Thus, it 
is important to apply denoising techniques to the data as a second step before 
running the actual clustering procedure. We find that the combination of these two 
processing steps is successful in unraveling protein structure, greatly improving over 
existing methods (as exemplified for GyrB and ProDom). 



Future research will be dedicated to further evaluation of the proposed algorithm. 
We will also explore the perspectives it opens in any field handling pairwise data. 
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