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Abstract

The constraint classification framework captures many flavors of mul-
ticlass classification including winner-take-all multiclass classification,
multilabel classification and ranking. We present a meta-algorithm for
learning in this framework that learns via a single linear classifier in high
dimension. We discuss distribution independent as well as margin-based
generalization bounds and present empirical and theoretical evidence
showing that constraint classification benefits over existing methods of
multiclass classification.

1 Introduction

Multiclass classification is a central problem in machine learning, as applications that re-
quire a discrimination among several classes are ubiquitous. In machine learning, these in-
clude handwritten character recognition [LS97, LBD � 89], part-of-speech tagging [Bri94,
EZR01], speech recognition [Jel98] and text categorization [ADW94, DKR97].

While binary classification is well understood, relatively little is known about multiclass
classification. Indeed, the most common approach to multiclass classification, the one-
versus-all (OvA) approach, makes direct use of standard binary classifiers to encode and
train the output labels. The OvA scheme assumes that for each class there exists a single
(simple) separator between that class and all the other classes. Another common approach,
all-versus-all (AvA) [HT98], is a more expressive alternative which assumes the existence
of a separator between any two classes.

OvA classifiers are usually implemented using a winner-take-all (WTA) strategy that as-
sociates a real-valued function with each class in order to determine class membership.
Specifically, an example belongs to the class which assigns it the highest value (i.e.,
the “winner”) among all classes. While it is known that WTA is an expressive classi-
fier [Maa00], it has limited expressivity when trained using the OvA assumption since
OvA assumes that each class can be easily separated from the rest. In addition, little is
known about the generalization properties or convergence of the algorithms used.

This work is motivated by several successful practical approaches, such as multiclass sup-
port vector machines (SVMs) and the sparse network of winnows (SNoW) architecture that



rely on the WTA strategy over linear functions. Our aim is to improve the understanding of
such classifier systems and to develop more theoretically justifiable algorithms that realize
the full potential of WTA.

An alternative interpretation of WTA is that every example provides an ordering of the
classes (sorted in descending order by the assigned values), where the “winner” is the first
class in this ordering. It is thus natural to specify the ordering of the classes for an example
directly, instead of implicitly through WTA.

In Section 2, we introduce constraint classification, where each example is labeled with a
set of constraints relating multiple classes. Each such constraint specifies the relative or-
der of two classes for this example. The goal is to learn a classifier consistent with these
constraints. Learning is made possible by a simple transformation mapping each example
into a set of examples (one for each constraint) and the application of any binary classifier
on the mapped examples. In Section 3, we present a new algorithm for constraint classi-
fication that takes on the properties of the binary classification algorithm used. Therefore,
using the Perceptron algorithm, it is able to learn a consistent classifier if one exists, us-
ing the winnow algorithm it can learn attribute efficiently, and using the SVM, it provides
a simple implementation of multiclass SVM. The algorithm can be implemented with a
subtle change to the standard (via OvA) approach to training a network of linear thresh-
old gates. In Section 4, we discuss both VC-dimension and margin-based generalization
bounds presented a companion paper[HPRZ02]. Our generalization bounds apply to WTA
classifiers over linear functions, for which VC-style bounds were not known.

In addition to multiclass classification, constraint classification generalizes multilabel clas-
sification, ranking on labels, and of course, binary classification. As a result, our algorithm
provides new insight into these problems, as well as new, powerful tools for solving them.
For example, in Section , we show that the commonly used OvA assumption can cause
learning to fail, even when a consistent classifier exists. Section 5 provides empirical evi-
dence that the constraint classification outperforms the OvA approach.

2 Constraint Classification

Learning problems often assume that examples, ���������
	���
�� , are drawn ��� ��� ��� from
fixed probability distribution, ������� , over ��
�� . � is referred to as the instance space
and � is referred to as the output space (label set).

Definition 2.1 (Learning) Given � examples, �! "�#���%$&�#�'$(�%�)�*�)�*�)�+�-,.�#�/,��#� , drawn �0� ��� �-�
from �1�2�3� , a hypothesis class 4 and an error function 5�6/�7
8�9
:4<; �>= �)? � , a learning
algorithm @2�A�B�#4
� attempts to output a function CD	
4 , where C
6'�E;�� , that minimizes
the expected error on a randomly drawn example.

Definition 2.2 (Permutations) Denote the set of full orders over
� ?F�)�*�*�*�0G � as �/H , con-

sisting of all permutations of
� ?/�*�*�)�(�0G � . Similarly, I� H denotes the set of all partial orders

over
� ?/�*�)�*�(��G � . A partial order, J
	KI�LH , defines a binary relation, M�N and can be rep-

resented by set of pairs on which M N holds, J1 � �����PO'�)Q �RM N O � . In addition, for any set
of pairs J� � ����$S�POT$*�%�*�)�*�)�)���VUW�XO)U-� � , we refer to J both as a set of pairs and as the partial
order produced by the transitive closure of J with respect to MYN . Given two partial ordersZ �0[�	\I� H , Z is consistent with [ (denoted Z^] [ ) if for every �+�0�XO'�2	 � ?F�)�*�*�*�0G �S_ , �`MbacO
holds whenever �`M�d:O . If Je	f� H is a full order, then it can be represented by a list of G
integers where �`M N O if � precedes O in the list. The size of a partial order, Q JFQ is the number
of pairs specified in J .
Definition 2.3 (Constraint Classification) Constraint classification is a learning problem
where each example �+�����3�.	g�h
<I� H is labeled according to a partial order �!	KI� H . A
constraint classifier, C^6��i; I� H , is consistent with example ��������� if � is consistent with
Cj���k� ( � ] C��+�k� ). When Q �cQ'l7J , we call it J -constraint classification.



Internal Output Size of
Problem Representation Space ( � ) Hypothesis Mapping

binary � 	 ��� ��� ?/�*? � ���
	�����
(� ?
multiclass ����$T�)�*�*�)��� H �:	

� H � � ?F�)�*�*�*�0G � ����	�������� $�������� � H � ��� 
)� G � ?!
-multilabel ����$T�)�*�*�)��� H �:	

� H � � ?/�*�*�)�(�0G �
" �#�$	������ " � $%������� � H � ���&
(�

! �AG � ! �
ranking ����$T�)�*�*�)��� H �:	

� H � � H �#�$	���'���(�� $%������� � H � ��� 
*� G � ?
constraint* ����$T�)�*�*�)��� H �:	

� H � I� H �#�$	���'���(�� $%������� � H � ��� 
*� –
J -constraint* ����$T�)�*�*�)��� H �:	

� H � I� HN �#�$	���'���( � $%������� � H � ��� 
*� J
Table 1: Definitions for various learning problems (notice that the hypothesis for constraint clas-
sification is always a full order) and the size of the resultant mapping to ) -constraint classification.*,+.-0/1*,2�3 is a variant of *4+.-5/1*42 that returns the 6 maximal indices with respect to 798;:�< . *,+.-0=?>0+?@ is
a linear sorting function (see Definition 2.6).

Definition 2.4 (Error Indicator Function) For any ���j�#����	^�i
^I� H , and hypothesis C 6
�E; I� H , the indicator function 5 ���j�#�W�0Ck� indicates an error on example � , 5 ���j�#�W�0Ck�` ?
if �BA] Cj���W� , and

=
otherwise.

For example, if G  DC and example ���j�#���8 "�+��� � �FE���G �%�)�HE3��C � �T� , Cc$T���W�: �HE3��G��*?/��C � , and
C _ ���W�` "��C��%E3�$G��*?S� , then CW$ is correct since E precedes G and E precedes C in the full order
�FE���G��*?F��C � whereas C _ is incorrect since C precedes E in ��C��%E3�$G��*?S� .
Definition 2.5 (Error) Given an example �+���#��� drawn ��� ��� ��� from �j�2�3� , the true error
of C 	g4 , where C 6L� ; �JI is defined to be K5LML3�ACk�  ONP��QJR 5:���j�#�W�0Ck�TS . Given �  
�#�+� $ �#� $ �%�)�*�*�)�)�+� , �#� , �#� , the empirical error of C 	 4 with respect to � is defined to beK5LML'�P�B�0Ck�R $U VWU Q�XZY
[ � \4]?^ V 5`���j�#�W�0Ck�*Q .
In this paper, we consider constraint classification problems where hypotheses are functions
from

���
to � H that output a permutation of

� ?/�*�)�*�(��G � .

Definition 2.6 (Linear Sorting Function) Let �K �_� $ �)�*�)�*��� H � be a set of G vectors,
where ����$T�)�*�*�)��� H �D	

���
. Given � 	 ���

, a linear sorting classifier is a function C 6��� ; � H computed in the following way:

Cj���W�` �����	`��'���(�baj$������ H
��� 
)���

where �#�$	���'���( returns a permutation of
� ?/�*�)�*�(��G � where � precedes O if � � 
��dce�gfP
#� . In

the case that ���&
*�
 h� f 
*� , � precedes O if �9i!O .
Constraint classification can model many well-studied learning problems including multi-
class classification, ranking and multilabel classification. Table 1 shows a few interesting
classification problems expressible as constraint classification. It is easy to show:

Lemma 2.7 (Problem mappings) All of the learning problems in Table 1 can be expressed
as constraint classification problems.

Consider a C -class multiclass example, �����$G/� . It is transformed into the G -constraint ex-
ample, ����� � �FG��*?S�%�>�_G��%EF�(�)�_G���C'� �>� . If we find a constraint classifier that correctly labels �
according to the given constraints where �kjl
 �Bcm�b$n
 � , ��jl
 �dco� _ 
 � , and ��jl
 �dco�qp 
 � ,
then G  r�#�$	������ $%� _ � j,� p �s�`
P� . If instead we are given a ranking example ���j� � �_G��%E3�)?F��C'� �S� ,
it can be transformed into ����� � �FG��$E/�%�>�FE3�)?>�(�)� ?/��C'� �S� .

3 Learning

In this section, G -class constraint classification is transformed into binary classification in
higher dimension. Each example ���j�#��� 	 �9� 
 I� H becomes a set of examples in

� H � 




��� ?/�*? � with each constraint �����PO'� contributing a single ‘positive’ and a single ‘negative’
example. Then, a separating hyperplane for the expanded example set (in

� H � ) can be
viewed as a linear sorting function over G linear functions, each in � dimensional space.

3.1 Kesler’s Construction

Kesler’s construction for multiclass classification was first introduced by Nilsson in
1965[Nil65, 75–77] and can also be found more recently[DH73]. This subsection extends
the Kesler construction for constraint classification.

Definition 3.1 (Chunk) A vector �  ��� $ �*�)�*�)��� H � � 	 � H �  ��� 
 
,
0
-
 ��� , is broken
into G chunks ��� $T�)�*�)�(��� H � where the � -th chunk, � �  ��� Y ���c$.]�� � � $ �*�)�*�)���#��� � � .
Definition 3.2 (Expansion) Let

	�

� ���j�#� � be a vector ��	 �#� embedded in G3� dimensions,
by writing the coordinates of � in the � -th chunk of a vector in

� H Y � � $.] . Denote by � " the
zero vector of length

!
. Then

	�

� �+�����V� can be written as the concatenation of three vectors,	�

� ���j�#� �  E��� Y ��� $�]�� � �#�j��� Y H �W�
]�� � �2	 � H � . Finally,
	�
�� �+���#���XO �  	�

� ������� � � 	�

� ���j�PO'� ,

is the embedding of � in the � -th chunk and
� � in the O -th chunk of a vector in

� H � .

Definition 3.3 (Expanded Example Sets) Given an example �+���#��� , where � 	 �#�
and

� 	 I� H , we define the expansion of ���j�#��� into a set of examples as follows,�
� ���j�#���` 

�
� 	�

� ���j�#���PO'�%�)?>����� �����PO'�:	
����� � H � 
 � ? �L�

A set of negative examples is defined as the reflection of each expanded example through
the origin, specifically� �R�+�����3�R �

� ��� � � ?>� ��� �
� �*?S�8	 � � ������������� � H � 
 ��� ? �L�

and the set of both positive and negative examples is denoted by
� ���������1 �

� ���j�#������ �R�+���#��� . The expansion of a set of examples, � , is defined as the union of all of the
expanded examples in the set,� �A�L�`  Yb[ � \4]T^ V

� �+�����3��� � H � 
 �`� ?F�)? �`�

Note that the original Kesler construction produces only
�

� . We also create
� � to simplify

the analysis and to maintain consistency when learning non-linear functions (such as SVM).

3.2 Algorithm

Figure 1 (a) shows a meta-learning algorithm for constraint classification that finds a linear
sorting function by using any algorithm for learning a binary classifier. Given a set of
examples �!� ��� 
�I� H , the algorithm simply finds a separating hyperplane Cj� � �` "�k
 � for� �A�`�#� � H � 
 ��� ?/�*? � . Suppose C correctly classifies � � �*?S�R "� 	�

� ���j�#���PO'�(�*?>�:	 � �P�L� ,
then

� 
$�  E�B
%�&� � �d
&� f c =
, and the constraint �+�0�XO'� on � (dictating that �d
&� �1c

� 
'� f ) is consistent with C�� � � . Therefore, if C�� � � correctly classifies all �f	 � �A�`� , then�#�$	���'���( $�������� � H � � 
)� is a consistent linear sorting function.

This framework is significant to multiclass classification in many ways. First, the hypoth-
esis learned above is more expressive than when the OvA assumption is used. Second,
it is easy to verify that other algorithmic-specific properties are maintained by the above
transformation. For example, attribute efficiency is preserved when using the winnow al-
gorithm. Finally, the multiclass support vector machine can be implemented by learning a
hyperplane to separate

� �P�L� with maximal margin.

3.3 Comparison to “One-Versus-All”

A common approach to multiclass classification ( �  � ?F�)�*�)�(�0G � ) is to make the one-
versus-all (OvA) assumption, namely, that each class can be separated from the rest using



Algorithm CONSTRCLASSLEARN
INPUT:

�! ����� $&��� $%�(�*�*�)�*�>���-,.���F,2��� ,
where � 	�� ��� 
 I� H�� ,

OUTPUT: A classifier C I
begin

4\ 
�� �
C ������

CD6 � H � ; ��� ?/�*? �
C�� � �` �d
 � ��L� � 	 � H �

� �
	

Calculate
� �P�L�8	 � H � 
 � ?F� � ? �

C  g@2� � �A�L�(� 4
�8	 4
Set C I ���k�R D����	`��'���( $�������� � H � � 
(�

end

Algorithm ONLINECONCLASSLEARN
INPUT:

�� �#�+�W$&�#� $*�%�*�)�*�)�)���k,.�#�F,Y�#� ,
where �f	
� ��� 
 I� H�� ,

OUTPUT: A classifier C I
begin

Initialize ���j$&�*�*�)� � H �8	 � H �
Repeat until converge

for �B �?/� � � do
for all � O/�XO I �:	
��� do

if � f 
)�n��i!� f
� 
(�W� then
promote ���lf>�
demote ���Wf
�X�

Set C I ���W�` �����	`��'���( $�������� � H �&�&
(�
end

(a) (b)

Figure 1: (a) Meta-learning algorithm for constraint classification with linear sorting func-
tions (see Definition 2.6). @2�.
 �,
 � is any binary learning algorithm returning a separat-
ing hyperplane. (b) Online meta-algorithm for constraint classification with linear sort-
ing functions (see Definition 2.6). The particular online algorithm used determines how
��� $ �*�)�*�)��� H � is initialized and the promotion and demotion strategies.

a binary classification algorithm. Learning proceeds by learning G independent binary
classifiers, one corresponding to each class, where example ���j�#��� is considered positive
for classifier � and negative for all others.

It is easy to construct an example where the OvA assumption causes the learning to fail
even when there exists a consistent linear sorting function. (see Figure 2) Notice, since
the existence of a consistent linear sorting function (w.r.t. � ) implies the existence of a
separating hyperplane (w.r.t.

� �P�L� ), any learning algorithm guaranteed to separate two
separable point sets (e.g. the Perceptron algorithm) is guaranteed to find a consistent linear
sorting function. In Section 5, we use the perceptron algorithm to find a consistent classifier
for an extension of the example in Figure 2 to

� $���� when OvA fails.

3.4 Comparison to Newtorks of Linear Threshold Gates (Perceptron)

It is possible to implement the algorithm in Section using a network of linear classi-
fiers such as multi-output Perceptron [AB99], SNoW [CCRR99, Rot98], and multiclass
SVM [CS00, WW99]. Such a network has ��	 �9�

as input and G outputs, each repre-
sented by a weight vector, �k�2	 ���

, where the � -th output computes � � 
S� (see Figure 1
(b)).

Typically, a label is mapped, via fixed transformation, into a G -dimensional output vec-
tor, and each output is trained separately, as in the OvA case. Alternately, if the online
perceptron algorithm is plugged into the meta-algorithm in Section , then updates are per-
formed according to a dynamic transformation. Specifically, given ���j�#��� , for every con-
straint �����XO � 	 � , if � � 
V�die�gf 
V� , � � is ‘promoted’ and �qf is ‘demoted’. Using a network
in this results in an ultraconservative online algorithm for multiclass classification [CS01].
This subtle change enables the commonly used network of linear threshold gates to learn
every hypothesis it is capable of representing.
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Figure 2: A 3-class classification example in �
�

showing that one-versus-all (OvA) does not con-
verge to a consistent hypothesis. Three classes (squares, triangles, and circles) should be separated
from the rest. Solid points act as ��� points in their respective classes. The OvA assumption will
attempt to separate the circles from squares and triangles with a single separating hyperplane, as well
as the other 2 combinations. Because the solid points are weighted, all OvA classifiers are required
to classify them correctly or suffer ��� mistakes, thus restricting what the final hypotheses will be. As
a result, the OvA assumption will misclassify point outlined with a double square since the square
classifier predicts “not square” and the circle classifier predicts “circle”. One can verify that there
exists a WTA classifier for this example.

Dataset Features Classes Training Examples Testing Examples
glass 9 6 214 –
vowel 10 11 528 462
soybean 35 19 307 376
audiology 69 24 200 26
ISOLET 617 26 6238 1559
letter 16 26 16000 4000
Synthetic* 100 3 50000 50000

Table 2: Summary of problems from the UCI repository. The synthetic data is sampled from a
random linear sorting function (see Section 5).

4 Generalization Bounds

A PAC-style analysis of multiclass functions that uses an extended notion of VC-dimension
for multiclass case [BCHL95] provides poor bounds on generalization for WTA, and the
current best bounds rely on a generalized notion of margin [ASS00]. In this section, we
prove tighter bounds using the new framework.

We seek generalization bounds for learning with 4 , the class of linear sorting functions
(Definition 2.6). Although both VC-dimension-based (based on growth function) and
margin-based bounds for the class of hyperplanes in

� H � are known [Vap98, AB99], they
cannot directly be applied since

� �P�L� produces points that are random, but not indepen-
dently drawn. It turns out that bounds can be derived indirectly by using known bounds for
constraint classification. Due to space considerations see[HPRZ02], where natural exten-
sions to the growth function and margin are used to develop generalization bounds.

5 Experiments

As in previous multiclass classification work [DB95, ASS00], we tested our algorithm on
a suite of problems from the Irvine Repository of machine learning [BM98] (see Table 2).
In addition, we created a simple experiment using synthetic data. The data was generated
according to a WTA function over G randomly generated linear functions in

� $ =F= , each
with weight vectors inside the unit ball. Then, �

=
K training and �

=
K testing examples were
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Figure 3: Comparison of constraint classification meta-algorithm using the Perceptron algorithm to
multi-output Perceptron using the OvA assumption. All of the results for the constraint classifica-
tion algorithm are competitive with the known. The synthetic data would converge to � error using
constraint classification but would not converge using the OvA approach.

randomly sampled within a ball of radius E around the origin and labeled with the linear
function that produced the highest value.

A comparison is made between the OvA approach (Section ) and the constraint classifica-
tion approach. Both were implemented on the same network of multi-output Perceptron
network with G �+��� ?>� weights (with one threshold per class). Constraint classification
used the modified update rule discussed in Section . Each update was performed as fol-
lows: ��� � $  h����� � for promotion and ��� � _  ���� � � for demotion. The networks were
initialized with weights all

=
.

For each multiclass example ���j�#� ,2�8	 ��� 
 � ?F�)�*�*�*�0G � , a constraint classification example

���j�#� N �8	 ��� 
 I� H was created, where � N  
�
���/,1���V� ��� O^ 

� ?F�)�*�*�*�0G ���R�F, � . Notice error

(Definition 2.4) of ������� N � corresponds to the traditional error for multiclass classification.

Figure 3 shows that constraint classification outperforms the multioutput Perceptron when
using the OvA assumption.

6 Discussion

We think constraint classification provides two significant contributions to multiclass clas-
sification. Firstly, it provides a conceptual generalization that encompasses multiclass clas-
sification, multilabel classification, and label ranking problems in addition to problems with
more complex relationships between labels. Secondly, it reminds the community that the
Kesler construction can be used to extend any learning algorithm for binary classification
to the multiclass (or constraint) setting.

Section 5 showed that the constraint approach to learning is advantageous over the one-
versus-all approach on both real-world and synthetic data sets. However, preliminary ex-
periments using various natural language data sets, such as part-of-speech tagging, do not
yield any significant difference between the two approaches. We used a common trans-
formation [EZR01] to convert raw data to approximately three million examples in one
hundred thousand dimensional boolean feature space. There were about 50 different part-
of-speech tags. Because the constraint approach is more expressive than the one-versus-all
approach, and because both approaches use the same hypothesis space ( G linear functions),
we expected the constraint approach to achieve higher accuracy. Is it possible that a dif-
ference would emerge if more data were used? We find it unlikely since both methods
use identical representations. Perhaps, it is instead a result of the fact that we are work-
ing in very high dimensional space. Again, we think this is not the case, since it seems
that “most” random winner-take-all problems (as with the synthetic data) would cause the
one-versus-all assumption to fail.

Rather, we conjecture that for some reason, natural language problems (along with the



transformation) are suited to the one-versus-all approach and do not require a more complex
hypothesis. Why, and how, this is so is a direction for future speculation and research.

7 Conclusions

The view of multiclass classification presented here simplifies the implementation, anal-
ysis, and understanding of many preexisting approaches. Multiclass support vector ma-
chines, ultraconservative online algorithms, and traditional one-versus-all approaches can
be cast in this framework. It would be interesting to see if it could be combined with the
error-correcting output coding method in [DB95] that provides another way to extend the
OvA approach. Furthermore, this view allows for a very natural extension of multiclass
classification to constraint classification – capturing within it complex learning tasks such
as multilabel classification and ranking. Because constraint classification is a very intuitive
approach and its implementation can be carried out by any discriminant technique, and not
only by optimization techniques, we think it will have useful real-world applications.
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