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Abstract 

There are several reinforcement learning algorithms that yield ap­
proximate solutions for the problem of policy evaluation when the 
value function is represented with a linear function approximator. 
In this paper we show that each of the solutions is optimal with 
respect to a specific objective function. Moreover, we characterise 
the different solutions as images of the optimal exact value func­
tion under different projection operations. The results presented 
here will be useful for comparing the algorithms in terms of the 
error they achieve relative to the error of the optimal approximate 
solution. 

1 Introduction 

In large domains the determination of an optimal value function via a tabular rep­
resentation is no longer feasible with respect to time and memory considerations. 
Therefore, reinforcement learning (RL) algorithms are combined with linear func­
tion approximation schemes. However, the different RL algorithms, that all achieve 
the same optimal solution in the tabular case, converge to different solutions when 
combined with function approximation. Up to now it is not clear which of the 
solutions, i.e. which of the algorithms, should be preferred. One reason is that a 
characterisation of the different solutions in terms of the objective functions they 
optimise is partly missing. In this paper we state objective functions for the TD(O) 
algorithm [9], the LSTD algorithm [4, 3] and the residual gradient algorithm [1] ap­
plied to the problem of policy evaluation, i.e. the determination of the value function 
for a fixed policy. Moreover, we characterise the different solutions as images of the 
optimal exact value function under different projection operations. We think that 
an analysis of the different optimisation criteria and the projection operations will 
be useful for determining the errors that the different algorithms achieve relative to 
the error of the theoretically optimal approximate solution. This will yield a cri­
terion for selecting an optimal RL algorithm. For the TD(O) algorithm such error 
bounds with respect to a specific norm are already known [2 , 10] but for the other 
algorithms there are no comparable results. 



2 Exact Policy Evaluation 

For a Markov decision process (MDP) with finite state space S (lSI = N), action 
space A, state transition probabilities p : (S, S, A) -+ [0,1] and stochastic reward 
function r : (S, A) -+ R policy evaluation is concerned with solving the Bellman 
equation 

Vit = "(PltVIt + Rit (1) 
for a fixed policy /-t : S -+ A. vt denotes the value of state Si, pt,j = p(Si' Sj, /-t(Si)), 
Rf = E{r(si,/-t(Si))} and "( is the discount factor. As the policy /-t is fixed we will 
omit it in the following to make notation easier. 

The fixed point V* of equation (1) can be determined iteratively with an operator 
T: RN -+ RN by 

TVn = V n+1 = "(PVn + R. 
This iteration converges to a unique fixed point [2], that is given by 

V* = (I - ,,(p)-l R, 

where (J - "(P) is invertible for every stochastic matrix P. 

3 Approximate Policy Evaluation 

(2) 

(3) 

If the state space S gets too large the exact solution of equation (1) becomes very 
costly with respect to both memory and computation time. Therefore, often linear 
feature-based function approximation is applied. The value function V is repre­
sented as a linear combination of basis functions H := {1J>1' ... , IJ> F} which can be 
written as V = IJ>w, where w E RF is the parameter vector describing the linear 
combination and IJ> = (1J>11 ... IIJ> F) E RNxF is the matrix with the basis functions 
as columns. The rows of IJ> are the feature vectors CP(Si) E RF for the states Si. 

3.1 The Optimal Approximate Solution 

If the transition probability matrix P were known, then the optimal exact solution 
V* = (J - ,,(P)-l R could be computed directly. The optimal approximation to 
this solution is obtained by minimising IllJ>w - V* II with respect to w. Therefore, 
a notion of norm must exist. Generally a symmetric positive definite matrix D can 
be used to define a norm according to II . liD = ~ with the scalar product 
(x, y) D = xT Dy. The optimal solution that can be achieved with the linear function 
approximator IJ>w then is the orthogonal projection of V* onto [IJ>], i.e. the span of 
the columns of IJ>. Let IJ> have full column rank. Then the orthogonal projection on 
[IJ>] according to the norm II· liD is defined as IID = 1J>(IJ>TDIJ»-lIJ>TD. We denote 
the optimal approximate solution by vf/ = IID V*. The corresponding parameter 
vector wfJ/ with vgL = IJ>wfJ/ is then given by 

wfJ/ = (IJ>TDIJ»-lIJ>TDV* = (IJ>TDIJ»-lIJ>TD(J _ ,,(P)-lR. (4) 

Here, 8L stands for supervised learning because wl} minimises the weighted 
quadratic error 

w~knF ~lllJ>w - V*111 = ~(lJ>w£L - v*f D(lJ>w£L - V*) = ~llVgL - V*111 (5) 

for a given D and V*, which is the objective of a supervised learning method. 
Note, that V* equals the expected discounted accumulated reward along a sampled 
trajectory under the fixed policy /-t, i.e. V*(so) = E[2:::o r(st, /-t(St))] for every 
So E S. These are exactly the samples obtained by the TD(l) algorithm [9]. Thus, 
the TD(l) solution is equivalent to the optimal approximate solution. 



3.2 The Iterative TD Algorithm 

In the approximate case the Bellman equation (1) becomes 

<I>w = ,,(P<I>w + R (6) 

A popular algorithm for updating the parameter vector w after a single transition 
Xi -+ Zi with reward ri is the stochastic sampling-based TD(O)-algorithm [9] 

wn+l = wn + acp(xi)[ri + ,,(CP(Zi )T wn - cp(Xi)T wn] = (IF + aAi)wn + abi , (7) 

where a is the learning rate, Ai = cp(Xi)["(cp(Zi) - cp(xi)f, bi = cp(xi)ri and IF is 
the identity matrix in RF. Let p be a probability distribution on the state space S. 
Furthermore, let Xi be sampled according to p, Zi be sampled according to P(Xi , ·) 
and ri be sampled according to r(x;). We will use E p[.] to denote the expectation 
with respect to the distribution p. Let AiP = Ep[A;] and bIt = Ep[bi]. If the 

p p 

learning rate decays according to 

Lat = 00 

t 

La; < 00, (8) 
t 

then, in the average sense, the stochastic TD(O) algorithm (7) behaves like the 
deterministic iteration 

(9) 

with 
ATD = _<I>T D (I - rvP)<I> bTD = <I>T D R (10) Dp PI' Dp P , 

where D p = diag(p) is the diagonal matrix with the elements of p and R is the 
vector of expected rewards [2] (Lemma 6.5, Lemma 6.7). In particular the stochastic 
TD(O) algorithm converges if and only if the deterministic algorithm (9) converges. 
Furthermore, if both algorithms converge they converge to the same fixed point. 

An iteration of the form (9) converges if all eigenvalues of the matrix 1+ aAip 
p 

lie within the unit circle [5]. For a matrix Alt that has only eigenvalues with 
p 

negative real part and a learning rate at that decays according to (8) there is a 
t* such that the eigenvalues of I + atA IF lie inside the unit circle for all t > t* . 

p 

Hence, for a decaying learning rate the deterministic TD(O) algorithm converges 
if all eigenvalues of Aft have a negative real part. Since this requirement is not 

p 

always fulfilled the TD algorithm possibly diverges as shown in [1] . This divergence 
is due to the positive eigenvalues of AI;D [8]. 

p 

However, under special assumptions convergence of the TD(O) algorithm can be 
shown [2]. Let the feature matrix <I> E RNxF have full rank, where F :::; N, i.e. 
there are not more parameters than states). This results in no loss of generality 
because the linearly dependent columns of <I> can be eliminated without changing the 
power of the approximation architecture. The most important assumption concerns 
the sampling of the states that is reflected in the matrix D. Let the Markov chain 
be aperiodic and recurrent. Besides the aperiodicity requirement, this assumption 
results in no loss of generality because transient states can be eliminated. Then a 
steady-state distribution 7r of the Markov chain exists. When sampling the states 
accordinj3 to this steady-state distribution, i.e. D = D'/r = diag(7r), it can be shown 
that AI;" is negative definite [2] (Lemma 6.6). This immediately yields that all 
eigenvalues are negative which in turn yields convergence of the TD(O) algorithm 
with decaying learning rate. 



In the next section we will characterise the limit value vZ;: as the projection of 
V* in a more general setting. However, for the sampling distribution 7r there is 
another interesting interpretation of VZ;: as the fixed point of IID~ T , where IID~ 
is the orthogonal projection with respect to DJr onto [<r>], as defined in section 3.1 , 
and T is the update operator defined in (2) [2 , 10] . In the following we use this fact 
to deduce a new formula for VZ;: that has a form similar to V* in (3). Before we 
proceed, we need the following lemma 

Lemma 1 The matrix 1 - ')'IID~P is regular. 

Proof: The matrix 1 - ')'IID~P is regular if and only if it does not have eigen­
value zero. An equivalent condition is that one is not an eigenvalue of ')'IID~ P. 
Therefore, it is sufficient to show that the spectral radius satisfies ehIID~P) < 1. 
For any matrix norm II· II it holds that e(A) :S IIAII [5]. Therefore, we know 
that ehIID~P) :S IbIID~PIID~ ' where the vector norm II·IID~ induces the matrix 
norm II . IID~ by the standard definition IIAIID~ = sUP ll x II D~=dIIAx IID~} . With 
this definition and with the fact that IlPx lID~ :S Il x lID~ for all x [2] (Lemma 6.4) 
we obtain IIPIID~ = sUP ll x II D~=dIIPxIID~} :S sUP llxII D~=dllx IID~} = 1. More­
over, we have IIIIDJID~ = sUP ll x II D~=d IIIID~ xI ID~} :S sUP ll x II D~=d llxIID~} = 1, 
where we used the well known fact that an orthogonal projection IID~ is a non­
expansion with respect to the vector norm II . IID~. Putting all together we obtain 
ehIID~P) :S II ')'IID~PIID~ :S ')' IIIIDJID~ · IIPIID~ :S ')' < 1. D 

We can now solve the fixed point equation vZ;: = IID~ TVZ;: and obtain 

(11) 

with j5 = IID~ P and R = IID~ R. This resembles equation (3) for the exact solution 
of the policy evaluation problem. The TD(O) solution with sampling distribution 
7r can thus be interpreted as exact solution of the "projected" policy evaluation 
problem with j5 and R. Note, that compared to the TD(l) solution of the approx­
imate policy evaluation problem VJ!: = IID~ (1 - ,),P) - l R with weighting matrix 
DJr equation (11) only differs in the position of the projection operator. This leads 
to an interesting comparison of TD(O) and TD(l) . While TD(O) yields the exact 
solution of the projected problem, TD(l) yields the projected solution of the exact 
problem. 

3.3 The Least-Squares TD Algorithm 

Besides the iterative solution of (6) often a direct solution by matrix inversion is 
computed using equation (9) in the fixed point form AiFwiF + bIt = O. This 

p p p 

approach is known as least-squares TD (LSTD) [4, 3]. It is only required that AIt 
p 

be invertible, i.e. that the eigenvalues be unequal zero. In contrast to the iterative 
TD algorithm the eigenvalues need not have negative real parts. Therefore, LSTD 
offers the possibility of using sampling distributions p other than the steady-state 
distribution 7r [6 , 7] Thus, parts of the state space that would be rarely visited under 
the steady-state distribution can now be visited more frequently which makes the 
approximation of the value function more reliable. This is necessary if the result of 
policy evaluation should be used in a policy improvement step because otherwise 
the action choice in rarely visited states may be bad [6]. 

For the following let the feature matrix have full column rank. As described above 
this results in no loss of generality. LSTD allows to sample the states with an 
arbitrary sampling distribution p. If there are states s that are not visited under p, 



i.e. p(s) = 0, then these states can be eliminated from the Markov chain. Hence, 
without loss of generality we assume that the matrix D p = diag(p) is invertible. 
These conditions ensure the invertibility of A'};D and according to [4, 3] the LSTD 

p 

solution is given by 
(12) 

Note, that the matrix A'iF and the vector bI;D can be computed from samples 
p p 

such that the model P does not need to be known. Note also that in general 
wI;D ¥- wy} as discussed in [3]. This means, that the TD(O) solution wI;D and the p p p 
TD(I) solution wfJ/ may differ when function approximation is used. 

p 

Depending on the sampling distribution p the LSTD approach may be the only 
way of computing the fixed point of (9) because the corresponding iterative TD(O) 
algorithm may diverge due to positive eigenvalues. However, if the TD(O) algorithm 
converges the limit coincides with the LSTD solution wI; D. 

p 

For the value function V.JD achieved by the LSTD algorithm the following holds 
p 

VTD q,WTD (~) q,(_ATD)-lbTD = q, [(_ATD)T(_ATD)] -1 (_ATD)TbTD Dp Dp Dp Dp Dp Dp Dp Dp 

(3),(10) II V* II V* ( ) = (I-,PjTDJq,q,TDp(I-,P) = DJD . 13 

We define D JD = (J - , P)TDJq,q,TDp(J - , P). As q,q,T is singular in general, the 
matrix DJD is symmetric and positive semi-definite. Hence, it defines a semi-norm 
II·IIDTD . Thus, the LSTD solution is obtained by projecting V* onto [q,] with 

p 

respect to II . II DT D. After having deduced this new relation between the optimal 
p 

solution V* and V.JD we can characterise WI;D as minimising the corresponding 
p p 

quadratic objective function. 

min~llq,w-V* 112 TD =~(q,WTD_V*fDTD(q,wTD_V*) = ~IIVTD-V*W TD . (14) 
cER F 2 Dp 2 Dp p Dp 2 Dp Dp 

It can be shown that the value of the objective function for the LSTD solution 
is zero, i.e. IIV.JD- V*111TD = O. With equation (14) we have shown that the 

p p 

LSTD solution minimises a certain error metric. The form of this error metric is 
similar to (5). The only difference lies in the norm that is used. This unifies the 
characterisation of the solutions that are achieved by different algorithms. 

3.4 The Residual Gradient Algorithm 

There is a third approach to solving equation (6). The residual gradient algorithm 
[1] directly minimises the weighted Bellman error 

1 2 -II(I - , P)q,w - RIID 2 p 
(15) 

by gradient descent. The resulting update rule of the deterministic algorithm has 
a form similar to (9) 

(16) 

with 

bRG = q,T(J - "VPT)D R Dp , P' (17) 

where D p is again the diagonal matrix with the visitation probabilities Pi on its 
diagonal. As all entries on the diagonal are nonnegative, D p can be decomposed 



into yfi5"";T yfi5"";. Hence, we can write Ai5; = -(yfi5"";(I _ ,p)q,)T yfi5"";(J - ,P)q,. 

Therefore, Ai5G is negative semidefinite. If q, has full column rank and Dp is 
p 

regular, i.e. the visitation probability for every state is positive, then Ai5G is negative 
p 

definite. Therefore, all eigenvalues of Ai5G are negative, which yields convergence of 
p 

the residual gradient algorithm (16) for a decaying learning rate independently of 
the weighting D p , t he function approximator q, and the transition probabilities P. 
The equivalence of the limit value of the deterministic and the stochastic version of 
the residual gradient algorithm can be proven with an argument similar to that in 
[2] for the equivalence of the deterministic and the stochastic version of the TD(O) 
algorithm in equations (7) and (9) respectively. Note also that the matrix Ai5G and 

p 

the vector bi5G can be computed from samples so that the model P does not need 
p 

to be known for the deterministic residual gradient algorithm. 

If Ai5G is invertible a unique limit of the iteration (16) exists. It can be directly 
p 

computed via the fixed point form, which yields the new identity 

wi5; = (-Ai5;)-lbi5; = (q,T(I - , pf Dp(I _ , p)q,) -l q,T (J _ , p)T DpR. (18) 

This solution of the residual gradient algorithm is related to the optimal solution 
(4) of the approximate Bellman equation (6) as described in the following lemma. 

Lemma 2 The solution wi5G of the residual gradient algorithm with weighting ma-
p 

trix D p is equivalent to the optimal supervised learning solution Wf/RG of the approx-
p 

imate B ellman equation (6) with weighting matrix D:G = (J _ , p)T Dp(I - , P). 

Proof: 

wi5; = (q,T (I _ , p)T Dp(I _ , p)q,) -l q,T (I - , pf DpR 

= (q,T D:Gq,) -l q,T (J - , pf Dp(I - , P)(I _ , p) -l R 

= (q,T DRGq,) -l q,T DRGV* = wSL 
p p DJ;G, 

where we used the fact that V* = (J _ , P) -l R. D 

Therefore , wi5G can be interpreted as the orthogonal projection of the optimal 
p 

solution V* onto [q,] with respect to the scalar product defined by D:G. This 
yields a new equivalent formula for the Bellman error (15) 

~II(I - , P)q,w - RII~ = ~((J - , P)q,w - RfDp((I - , P)q,w - R) 
2 p 2 

= ~(q,w - v*f(I - , pfDp(J - , P)(q,w - V*) = ~11q,w - V*II~RG' (19) 
2 2 p 

The Bellman error is the objective function that is minimised by the residual gra­
dient algorithm. As we have just shown, this objective function can be expressed 
in a form similar to (5), where the only difference lies in the norm that is used. 
Thus, we have shown that the solution of the residual gradient algorithm can also 
be characterised in the general framework of quadratic error metrics IIq,w - V* liD. 
As a direct consequence we can represent the solution as an orthogonal projection 
V RG = q,wRG = II RG V*. Dp Dp Dp 

According to section 3.2 an iteration of the form (16) generally converges for matri­
ces A with eigenvalues that have negative real parts. However, the fact that Ai5G 

p 

is symmetric assures convergence even for singular Ai5G [8] (Proposition 1). Thus, 
p 



Table 1: Overview over the solutions of different RL algorithms. The supervised 
learning (SL) approach, the TD(O) algorithm, the LSTD algorithm and the residual 
gradient (RG) algorithm are analysed in terms of the conditions of solvability. More­
over, we summarise the optimisation criteria that the different algorithms minimise 
and characterise the different solutions in terms of the projection of the optimal 
solution V* onto [<1>]. If the visitation distribution is arbitrary, we write 'r:/p. 

SL TD LSTD RG 

solvability: condition for Ai - Re(Ai) < 0 Ai :;i 0 Re(Ai) ::::: 0 

condition for p 'r:/p p=7f p(s) :;i 0 'r:/p 

optimisation criterion eq. (5) eq. (14) eq. (14) eq. (19) 

characterisation as projection IIDp V* IID;D V* IIDTD V* p IIDRG V* p 

the residual gradient algorithm (16) converges for any matrix A15G that is of the 
p 

form (17) and in case A15G is regular the limit is given by (18). Note that a matrix 
p 

<I> which does not have full column rank leads to ambiguous solutions w15G that 
p 

depend on the initial value wo. However, the corresponding V j}G = <l>w15G are the 
p p 

same. For singular Dp the matrix D:G = (I - ,P)T Dp(J - IP) is also singular. 
Thus, the limit Vj}G may not be unique but may depend itself on the initial value 

p 

wo. The reason is that there may be a whole subspace of [<I>] with dimension larger 
than zero that minimises IIVj}G - V*IIDRG because II·IIDRG is now only a semi-norm. p p p 
But for all minimising Vj}G the Bellman error is the same, i.e. with respect to the 

p 

Bellman error all the solutions Vj}G are equivalent [8] (Proposition 1). 
p 

3.5 Synopsis of the Different Solutions 

In Table 1 we give a brief overview of the solutions that the different RL algo­
rithms yield. An SL solution can be computed for arbitrary weighting matrices D p 

induced by a sampling distribution p. For the three RL algorithms (TD, LSTD, 
RG) solvability conditions can be either formulated in terms of the eigenvalues of 
the iteration matrix A or in terms of the sampling distribution p. The iterative 
TD(O) algorithm has the most restrictive conditions for solvability both for the 
eigenvalues of the iteration matrix A, whose real parts must be smaller than zero, 
and for the sampling distribution p, which must equal the steady-state distribution 
7f. The LSTD method only requires invertibility of Arp. This is satisfied if <I> has 

p 

full column rank and if the visitation distribution p samples every state s infinitely 
often, i.e. p( s) :;i 0 for all s E S. In contrast to that the residual gradient algorithm 
converges independently of p and the concrete A15G because all these matrices have 

p 

eigenvalues with nonpositive real parts. 

All solutions can be characterised as minimising a quadratic optimisation criterion 
Il<I>w - V* liD with corresponding matrix D. The SL solution optimises the weighted 
quadratic error (5), RG optimises the weighted Bellman error (19) and both TD and 
LSTD optimise the quadratic function (14) with weighting matrices D;;D and DJD 
respectively. With the assumption of regular D p , i.e. p(s) :;i 0 for all s E S, the 
solutions V can be characterised as images of the optimal solution V* under different 
orthogonal projections (optimal, RG) and projections that minimise a semi-norm 
(TD, LSTD). For singular Dp see the remarks on ambiguous solutions in section 3.4. 



Let us finally discuss the case of a quasi-tabular representation of the value function 
that is obtained for regular <I> and let all states be visited infinitely often, i.e. D p is 
regular. Due to the invertibility of <I> we have [<I>] = ~N. Thus, the optimal solution 
V* is exactly representable because V* E [<I>]. Moreover, every projection operator 
II : ~N -+ [<I>] reduces to the identity. Therefore, all the projection operators for 
the different algorithms are equivalent to the identity. Hence, with a quasi-tabular 
representation all the algorithms converge to the optimal solution V*. 

4 Conclusions 

We have presented an analysis of the solutions that are achieved by different rein­
forcement learning algorithms combined with linear function approximation. The 
solutions of all the examined algorithms, TD(O), LSTD and the residual gradient 
algorithm, can be characterised as minimising different corresponding quadratic 
objective function. As a consequence, each of the value functions, that one of the 
above algorithms converges to , can be interpreted as image of the optimal exact 
value function under a corresponding orthogonal projection. In this general frame­
work we have given the first characterisation of the approximate TD(O) solution 
in terms of the minimisation of a quadratic objective function. This approach al­
lows to view the TD(O) solution as exact solution of a projected learning problem. 
Moreover , we have shown that the residual gradient solution and the optimal ap­
proximate solution only differ in the weighting of the error between the exact and 
the approximate solution. In future research we intend to use the results presented 
here for determining the errors of the different solutions relative to the optimal 
approximate solution with respect to a given norm. This will yield a criterion for 
selecting reinforcement learning algorithms that achieve optimal solution quality. 

References 

[1] L. C. Baird. Residual algorithms: Reinforcement learning with function approxima­
tion. Proc. of the Twelfth International Conference on Machine Learning, 1995. 

[2] D. P. Bertsekas and J. N. Tsitsiklis. Neuro Dynamic Programming. Athena Scientific, 
Belmont, Massachusetts, 1996. 

[3] J .A. Boyan. Least-squares temporal difference learning. In Proceeding of the Sixteenth 
International Conference on Machine Learning, pages 49- 56, 1999. 

[4] S.J Bradtke and A.G. Barto. Linear least-squares algorithms for temporal difference 
learning. Machine Learning, 22:33- 57, 1996. 

[5] A. Greenbaum. Iterative Methods for Solving Linear Systems. SIAM, 1997. 

[6] D. Koller and R. Parr. Policy iteration for factored mdps. In Proc. of the Sixteenth 
Conference on Uncertainty in Artificial Intelligence (UAI) , pages 326- 334, 2000. 

[7] M. G. Lagoudakis and R . Parr. Model-free least-squares policy iteration. In Advances 
in Neural Information Processing Systems, volume 14, 2002. 

[8] R. Schoknecht and A. Merke. Convergent combinations of reinforcement learning 
with function approximation. In Advances in Neural Information Processing Systems, 
volume 15, 2003. 

[9] R. S. Sutton. Learning to predict by the methods of temporal differences. Machine 
Learning, 3:9- 44, 1988. 

[10] J. N. Tsitsiklis and B. Van Roy. An analysis of temporal-difference learning with 
function approximation. IEEE Transactions on Automatic Control, 1997. 


