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Abstract

We present a hierarchical Bayesian model for learning efficient codes of
higher-order structure in natural images. The model, a non-linear gen-
eralization of independent component analysis, replaces the standard as-
sumption of independence for the joint distribution of coefficients with
a distribution that is adapted to the variance structure of the coefficients
of an efficient image basis. This offers a novel description of higher-
order image structure and provides a way to learn coarse-coded, sparse-
distributed representations of abstract image properties such as object
location, scale, and texture.

1 Introduction

One of the major challenges in vision is how to derive from the retinal representation
higher-order representations that describe properties of surfaces, objects, and scenes. Phys-
iological studies of the visual system have characterized a wide range of response proper-
ties, beginning with, for example, simple cells and complex cells. These, however, offer
only limited insight into how higher-order properties of images might be represented or
even what the higher-order properties might be. Computational approaches to vision of-
ten derive algorithms by inverse graphics, i.e. by inverting models of the physics of light
propagation and surface reflectance properties to recover object and scene properties. A
drawback of this approach is that, because of the complexity of modeling, only the sim-
plest and most approximate models are computationally feasible to invert and these often
break down for realistic images. A more fundamental limitation, however, is that this for-
mulation of the problem does not explain the adaptive nature of the visual system or how it
can learn highly abstract and general representations of objects and surfaces.

An alternative approach is to derive representations from the statistics of the images them-
selves. This information theoretic view, called efficient coding, starts with the observation
that there is an equivalence between the degree of structure represented and the efficiency
of the code [1]. The hypothesis is that the primary goal of early sensory coding is to en-
code information efficiently. This theory has been applied to derive efficient codes for
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natural images and to explain a wide range of response properties of neurons in the visual
cortex [2-7].

Most algorithms for learning efficient representations assume either simply that the data
are generated by a linear superposition of basis functions, as in independent component
analysis (ICA), or, as in sparse coding, that the basis function coefficients are *sparsified’
by lateral inhibition. Clearly, these simple models are insufficient to capture the rich struc-
ture of natural images, and although they capture higher-order statistics of natural images
(correlations beyond second order), it remains unclear how to go beyond this to discover
higher-order image structure.

One approach is to learn image classes by embedding the statistical density assumed by
ICA in a mixture model [8]. This provides a method for modeling classes of images and
for performing automatic scene segmentation, but it assumes a fundamentally local repre-
sentation and therefore is not suitable for compactly describing the large degree of structure
variation across images. Another approach is to construct a specific model of non-linear
features, e.g. the responses of complex cells, and learn an efficient code of their outputs [9].
With this, one is limited by the choice of the non-linearity and the range of image regulari-
ties that can be modeled.

In this paper, we take as a starting point the observation by Schwartz and Simoncelli [10]
that, for natural images, there are significant statistical dependencies among the variances
of filter outputs. By factoring out these dependencies with divisive normalization, Schwartz
and Simoncelli showed that the model could account for a wide range of non-linearities
observed in neurons in the auditory nerve and primary visual cortex.

Here, we propose a statistical model for higher-order structure that learns a basis on the
variance regularities in natural images. This higher-order, non-orthogonal basis describes
how, for a particular visual image patch, image basis function coefficient variances deviate
from the default assumption of independence. This view offers a novel description of
higher-order image structure and provides a way to learn sparse distributed representations
of abstract image properties such as object location, scale, and surface texture.

Efficient coding of natural images

The computational goal of efficient coding is to derive from the statistics of the pattern
ensemble a compact code that maximally reduces the redundancy in the patterns with min-
imal loss of information. The standard model assumes that the data is generated using a set
of basis functions A and coefficients u:

x=Au, 1)
Because coding efficiency is being optimized, it is necessary, either implicitly or explicitly,

for the model to capture the probability distribution of the pattern ensemble. For the linear
model, the data likelihood is [11,12]

P(X|A) = p(u)/|detA|. )
The coefficients u;, are assumed to be statistically independent
p(u) = [ p(w).- ©)
1

ICA learns efficient codes of natural scenes by adapting the basis vectors to maximize
the likelihood of the ensemble of image patterns, p(X1,...,Xn) = [Tn P(Xn|A), which maxi-
mizes the independence of the coefficients and optimizes coding efficiency within the limits
of the linear model.
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Figure 1: Statistical dependencies among natural image independent component basis co-
efficients. The scatter plots show for the two basis functions in the same row and column
the joint distributions of basis function coefficients. Each point represents the encoding of
a 20 x 20 image patch centered at random locations in the image. (a) For complex natural
scenes, the joint distributions appear to be independent, because the joint distribution can
be approximated by the product of the marginals. (b) Closer inspection of particular image
regions (the image in (b) is contained in the lower middle part of the image in (a)) reveals
complex statistical dependencies for the same set of basis functions. (c) Images such as
texture can also show complex statistical dependencies.

Statistical dependencies among ‘independent’ components

A linear model can only achieve limited statistical independence among the basis function
coefficients and thus can only capture a limited degree of visual structure. Deviations from
independence among the coefficients reflect particular kinds of visual structure (fig. 1). If
the coefficients were independent it would be possible to describe the joint distribution as
the product of two marginal densities, p(ui,uj) = p(ui)p(uj). This is approximately true
for natural scenes (fig.1a), but for particular images, the joint distribution of coefficients
show complex statistical dependencies that reflect the higher-order structure (figs.1b and
1c). The challenge for developing more general models of efficient coding is formulating
a description of these higher-order correlations in a way that captures meaningful higher-
order visual structure.

2 Modding higher-order statistical structure

The basic model of standard efficient coding methods has two major limitations. First,
the transformation from the pattern to the coefficients is linear, so only a limited class
of computations can be achieved. Second, the model can capture statistical relationships
among the pixels, but does not provide any means to capture higher order relationships
that cannot be simply described at the pixel level. As a first step toward overcoming these
limitations, we extend the basic model by introducing a non-independent prior to model
higher-order statistical relationships among the basis function coefficients.

Given a representation of natural images in terms of a Gabor-wavelet-like representation
learned by ICA, one salient statistical regularity is the covariation of basis function coeffi-
cients in different visual contexts. Any specific type of image region, e.g. a particular kind
of texture, will tend to yield in large values for some coefficients and not others. Different
types of image regions will exhibit different statistical regularities among the variances of
the coefficients. For a large ensemble of images, the goal is to find a code that describes
these higher-order correlations efficiently.



In the standard efficient coding model, the coefficients are often assumed to follow a gen-
eralized Gaussian distribution

p(uj) = ze 1w/ 4)
where z= q/(2Al'[1/q]). The exponent g determines the distribution’s shape and weight
of the tails, and can be fixed or estimated from the data for each basis function coefficient.
The parameter A; determines the scale of variation (usually fixed in linear models, since
basis vectors in A can absorb the scaling). A; is a generalized notion of variance; for clarity,
we refer to it simply as variance below.

Because we want to capture regularities among the variance patterns of the coefficients,
we do not want to model the values of u themselves. Instead, we assume that the relative
variances in different visual contexts can be modeled with a linear basis as follows

Ai = exp([Bv]) (5)
=logh = Bv. (6)
where [Bv]; refers to the it element of the product vector Bv. This formulation is useful
because it uses a basis to represent the deviation from the variance assumed by the stan-
dard model. If we assume that v; also follows a zero-centered, sparse distribution (e.g. a
generalized Gaussian), then Bv is peaked around zero which yields a variance of one, as
in standard ICA. Because the distribution is sparse, only a few of the basis vectors in B
are needed to describe how any particular image deviates from the default assumption of
independence. The joint distribution for the prior (eqn.3) becomes
L q
- |Og p(U‘B,V) U Z ’ (7)
I
Having formulated the problem as a statistical model, the choice of the value of v for a
given u is determined by maximizing the posterior distribution

¥ = argmax p(v|u, B) = argmax p(u|B, ) p(v) ®)

Ui
elBVli

Unfortunately, computing the most probable v is not straightforward. Because v specifies
the variance of u, there is a range of values that could account for a given pattern — all that
changes is the probability of the first order representation, p(u|B,v). For the simulations
below, ¥ was estimated by gradient ascent.

By maximizing the posterior p(v|u, B), the algorithm is computing the best way to describe
how the distribution of v;’s for the current image patch deviates from the default assumption
of independence, i.e. v =0. This aspect of the algorithm makes the transformation from
the data to the internal representation fundamentally non-linear. The basis functions in
B represent an efficient, sparse, distributed code for commonly observed deviations. In
contrast to the first layer, where basis functions in A correspond to specific visual features,
higher-order basis functions in B describe the shapes of image distributions.

The parameters are adapted by performing gradient ascent on the data likelihood. Using the
generalized prior, the data likelihood is computed by marginalizing over the coefficients.
Assuming independence between B and v, the marginal likelihood is

P(XIA.B) = [ p(ulB.v)p(v)/|detAldv. ©

This, however, is intractable to compute, so we approximate it by the maximum a posteriori
value ¥

P(X|A,B) ~ p(u|B,V)p(V)/|detA|. (10)
We assume that p(v) = [ p(vi) and that p(v;) O exp(—|vi|). We adapt B by maximizing
the likelihood over the data ensemble

B= argmngIog p(un|B,¥n) + logp(B) (11)
n

For reasons of space, we omit the (straightforward) derivations of the gradients.



Figure 2: A subset of the 400 image basis functions. Each basis function is 20x20 pixels.

3 Reaults

The algorithm described above was applied to a standard set of ten 512 x 512 natural images
used in [2]. For computational simplicity, prior to the adaptation of the higher-order basis
B, a 20 x 20 ICA image basis was derived using standard methods (e.g. [3]). A subset of
these basis functions is shown in fig. 2.

Because of the computational complexity of the learning procedure, the number of basis
functions in B was limited to 30, although in principle a complete basis of 400 could be
learned. The basis B was initialized to small random values and gradient ascent was per-
formed for 4000 iterations, with a fixed step size of 0.05. For each batch of 5000 randomly
sampled image patches, V was derived using 50 steps of gradient ascent at a fixed step size
of 0.01.

Fig. 3 shows three different representations of the basis functions in the matrix B adapted to
natural images. The first 10 x 3 block (fig.3a) shows the values of the 30 basis functions in
B in their original learned order. Each square represents 400 weights B; j from a particular
vj to all the image basis functions u;’s. Black dots represent negative weights; white,
positive weights. In this representation, the weights appear sparse, but otherwise show no
apparent structure, simply because basis functions in A are unordered.

Figs. 3b and 3c show the weights rearranged in two different ways. In fig. 3b, the dots rep-
resenting the same weights are arranged according to the spatial location within an image
patch (as determined by fitting a 2D Gabor function) of the basis function which the weight
affects. Each weight is shown as a dot; white dots represent positive weights, black dots
negative weights. In fig. 3c, the same weights are arranged according to the orientation and
spatial scale of the Gaussian envelope of the fitted Gabor. Orientation ranges from 0 to 1t
counter-clockwise from the horizontal axis, and spatial scale ranges radially from DC at the
bottom center to Nyquist. (Note that the learned basis functions can only be approximately
fit by Gabor functions, which limits the precision of the visualizations.)

In these arrangements, several types of higher-order regularities emerge. The predominant
one is that coefficient variances are spatially correlated, which reflects the fact that a com-
mon occurrence is an image patch with a small localized object against a relatively uniform
background. For example, the pattern in row 5, column 3 of fig. 3b shows that often the
coefficient variances in the top and bottom halves of the image patch are anti-correlated,
i.e. either the object or scene is primarily across the top or across the bottom. Because
v; can be positive or negative, the higher-order basis functions in B represent contrast in
the variance patterns. Other common regularities are variance-contrasts between two ori-
entations for all spatial positions (e.g. row 7, column 1) and between low and high spatial
scales for all positions and orientations (e.g. row 9, column 3). Most higher-order basis
functions have simple structure in either position, orientation, or scale, but there are some
whose organization is less obvious.
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Figure 3: The learned higher-order basis functions. The same weights shown in the original
order (a); rearranged according to the spatial location of the corresponding image basis
functions (b); rearranged according to frequency and orientation of image basis functions
(c). See text for details.
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Figure 4. Image patches that yielded the largest coefficients for two basis functions in B.
The central block contains nine image patches corresponding to higher-order basis function
coefficients with values near zero, i.e. small deviations from independent variance patterns.
Positions of other nine-patch blocks correspond to the associated values of higher-order
coefficients, here vi5 and vo7 (whose weights to u;’s are shown at the axes extrema). For
example, the upper-left block contains image patches for which vy5 was highly negative
(contrast localized to bottom half of patch) and vo7 was highly positive (power predomi-
nantly at low spatial scales). This illustrates how different combinations of basis functions
in B define distributions of images (in this case, spatial frequency and location).

Another way to get insight into the code learned by the model is to display, for a large
ensemble of image patches, the patches that yield the largest values of particular v;’s (and
their corresponding basis functions in B). This is shown in fig. 4.

As a check to see if any of the higher-order structure learned by the algorithm was simply
due to random variations in the dataset, we generated a dataset by drawing independent
samples up from a generalized Gaussian to produce the pattern X, = Aup. The resulting
basis B was composed only of small random values, indicating essentially no deviation
from the standard assumption of independence and unit variance. In addition, adapting
the model on a synthetic dataset generated from a hand-specified B recovers the original
higher-order basis functions.

It is also possible to adapt A and B simultaneously (although with considerably greater
computational expense). To check the validity of first deriving B for a fixed A, both ma-
trices were adapted simultaneously for small 8 x 8 patches on the same natural image data
set. The results for both the image basis matrix A and the higher-order basis B were quali-
tatively similar to those reported above.



4 Discussion

We have presented a model for learning higher-order statistical regularities in natural im-
ages by learning an efficient, sparse-distributed code for the basis function coefficient vari-
ances. The recognition algorithm is non-linear, but we have not tested yet whether it can
account for non-linearities similar to the types reported in [10].

A (cautious) neurobiological interpretation of the higher-order units is that they are anal-
ogous to complex cells which pool output over specific first-order feature dimensions.
Rather than achieving a simplistic invariance, however, the model presented here has the
specific goal of efficiently representing the higher-order structure by adapting to the statis-
tics of natural images, and thus may predict a broader range of response properties than are
commonly tested physiologically.

One salient type of higher-order structure learned by the model is the position of image
structure within the patch. It is interesting that, rather than encoding specific locations, the
model learned a coarse code of position using broadly tuned spatial patterns. This could
offer novel insights into the function of the broad tuning of higher level visual neurons.
By learning higher-order basis functions for different classes of visual images, the model
could not only provide insights into other types of visual response properties, but could
provide a way to simplify some of the computations in perceptual organization and other
computations in mid-level vision.
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