
Real-time Particle Filters

Cody Kwok
�

Dieter Fox
�

Marina Meilă
�

�
Dept. of Computer Science & Engineering,

�
Dept. of Statistics

University of Washington
Seattle, WA 98195�

ctkwok,fox � @cs.washington.edu, mmp@stat.washington.edu

Abstract

Particle filters estimate the state of dynamical systems from sensor infor-
mation. In many real time applications of particle filters, however, sensor
information arrives at a significantly higher rate than the update rate of the
filter. The prevalent approach to dealing with such situations is to update
the particle filter as often as possible and to discard sensor information that
cannot be processed in time. In this paper we present real-time particle fil-
ters, which make use of all sensor information even when the filter update
rate is below the update rate of the sensors. This is achieved by represent-
ing posteriors as mixtures of sample sets, where each mixture component
integrates one observation arriving during a filter update. The weights of
the mixture components are set so as to minimize the approximation error
introduced by the mixture representation. Thereby, our approach focuses
computational resources (samples) on valuable sensor information. Exper-
iments using data collected with a mobile robot show that our approach
yields strong improvements over other approaches.

1 Introduction

Due to their sample-based representation, particle filters are well suited to estimate the state
of non-linear dynamic systems. Over the last years, particle filters have been applied with
great success to a variety of state estimation problems including visual tracking, speech
recognition, and mobile robotics [1]. The increased representational power of particle fil-
ters, however, comes at the cost of higher computational complexity.

The application of particle filters to online, real-time estimation raises new research ques-
tions. The key question in this context is: How can we deal with situations in which the rate
of incoming sensor data is higher than the update rate of the particle filter? To the best of
our knowledge, this problem has not been addressed in the literature so far. The prevalent
approach in real time applications is to update the filter as often as possible and to discard
sensor information that arrives during the update process. Obviously, this approach is prone
to losing valuable sensor information. At first sight, the sample based representation of parti-
cle filters suggests an alternative approach similar to an any-time implementation: Whenever
a new observation arrives, sampling is interrupted and the next observation is processed.
Unfortunately, such an approach can result in too small sample sets, causing the filter to
diverge [1, 2].

In this paper we introduce real-time particle filters (RTPF) to deal with constraints imposed
by limited computational resources. Instead of discarding sensor readings, we distribute the

 u t t t1 2 3 St+1 1
St+1 1

 t+1 3 t+1 2 t+1 1

 u t t+1 t+13 1 2

 z z z z z z z

SSS

 z z z z

S S S

 z 3

11

32
1

1

3

3

2

2

1

tt ttt
 ut1

 ut 2
 u

3t

(a) (b) (c)
 t t t t

 t t t t+1 1

t+1 1

 t+1 1
.

Figure 1: Different strategies for dealing with limited computational power. All approaches process
the same number of samples per estimation interval (window sizeq three). (a) Skip observations, i.e.
integrate only every third observation. (b) Aggregate observations within a window and integrate them
in one step. (c) Reduce sample set size so that each observation can be considered.

samples among the different observations arriving during a filter update. Hence RTPF repre-
sents densities over the state space by mixtures of sample sets, thereby avoiding the problem
of filter divergence due to an insufficient number of independent samples. The weights of the
mixture components are computed so as to minimize the approximation error introduced by
the mixture representation. The resuling approach naturally focuses computational resources
(samples) on valuable sensor information.

The remainder of this paper is organized as follows: In the next section we outline the basics
of particle filters in the context of real-time constraints. Then, in Section 3, we introduce our
novel technique to real-time particle filters. Finally, we present experimental results followed
by a discussion of the properties of RTPF.

2 Particle filters

Particle filters are a sample-based variant of Bayes filters, which recursively estimate poste-
rior densities, or beliefs ����� , over the state ��� of a dynamical system (see [1, 3] for details):

�����	�
� ����
 � ��� ��� � ���
�

� ��� ��� � �������	��������� �����	�
� ��� �!�#" � ��� ��$ (1)

Here �%� is a sensor measurement and � ��� � is control information measuring the dynamics of
the system. Particle filters represent beliefs by sets & � of weighted samples '��)(+*+,� �	- (+*.,�0/ . Each
� (.*+,� is a state, and the - (+*.,� are non-negative numerical factors called importance weights,
which sum up to one. The basic form of the particle filter realizes the recursive Bayes filter
according to a sampling procedure, often referred to as sequential importance sampling with
resampling (SISR):
1. Resampling: Draw with replacement a random state � from the set & ��� � according to the
(discrete) distribution defined through the importance weights -1(.*+,����� .
2. Sampling: Use � and the control information � ����� to sample ��2 according to the
distribution � �
� 2 � � �	�������!� , which describes the dynamics of the system.
3. Importance sampling: Weight the sample � 2 by the observation likelihood - 2�3 � ��� ��� � 2 � .
Each iteration of these three steps generates a sample '���2 �	- 2 / representing the posterior.
After 4 iterations, the importance weights of the samples are normalized so that they sum up
to one. Particle filters can be shown to converge to the true posterior even in non-Gaussian,
non-linear dynamic systems [4].

A typical assumption underlying particle filters is that all samples can be updated whenever
new sensor information arrives. Under realtime conditions, however, it is possible that the
update cannot be completed before the next sensor measurement arrives. This can be the
case for computationally complex sensor models or whenever the underlying posterior re-
quires large sample sets [2]. The majority of filtering approaches deals with this problem by
skipping sensor information that arrives during the update of the filter. While this approach
works reasonably well in many situations, it is prone to miss valuable sensor information.

α1
α2 α3

α α α

z z z z z

SS

Estimation window t+1

1 2 3t t t

Estmation window t

 t+1 1 2 t+1 z
 3 t+1

t t1 2 3

1 2
3

’ ’’

t S St+1 t+1 2 t+1 3
SS

 1

Figure 2: Real time particle filters. The � samples are distributed among the observations within one
estimation interval (window size three in this example). The belief is a mixture of the individual sample
sets. Each arrow additionally represents the system dynamics ����������	�

��������������
���� .

Before we discuss ways of dealing with such situations, let us introduce some notation. We
assume that observations arrive at time intervals � , which we will call observation intervals.
Let 4 be the number of samples required by the particle filter. Assume that the resulting
update cycle of the particle filter takes ��� and is called the estimation interval or estimation
window. Accordingly, � observations arrive during one estimation interval. We call this
number the window size of the filter, i.e. the number of observations obtained during a filter
update. The � -th observation and state within window � are denoted ���
 and � �
 , respectively.

Fig. 1 illustrates different approaches to dealing with window sizes larger than one. The sim-
plest and most common aproach is shown in Fig. 1(a). Here, observations arriving during
the update of the sample set are discarded, which has the obvious disadvantage that valuable
sensor information might get lost. The approach in Fig. 1(b) overcomes this problem by ag-
gregating multiple observations into one. While this technique avoids the loss of information,
it is not applicable to arbitrary dynamical systems. For example, it assumes that observations
can be aggregated optimally, and that the integration of an aggregated observation can be
performed as efficiently as the integration of individual observations, which is often not the
case. The third approach, shown in Fig. 1(c), simply stops generating new samples whenever
an observation is made (hence each sample set contains only 4���� samples). While this ap-
proach takes advantage of the any-time capabilities of particle filters, it is susceptible to filter
divergence due to an insufficent number of samples [2, 1].

3 Real time particle filters
In this paper we propose real time particle filters (RTPFs), a novel approach to dealing with
limited computational resources. The key idea of RTPFs is to consider all sensor measure-
ments by distributing the samples among the observations within an update window. Addi-
tionally, by weighting the different sample sets within a window, our approach focuses the
computational resources (samples) on the most valuable observations. Fig. 2 illustrates the
approach. As can be seen, instead of one sample set at time � , we maintain � smaller sample
sets at � � � $�$ $ �! . We treat such a “virtual sample set”, or belief, as a mixture of the distribu-
tions represented in it. The mixture components represent the state of the system at different
points in time. If needed, however, the complete belief can be generated by considering the
dynamics between the individual mixture components.

Compared to the first approach discussed in the previous section, this method has the ad-
vantage of not skipping any observations. In contrast to the approach shown in Fig. 1(b),
RTPFs do not make any assumptions about the nature of the sensor data, i.e. whether it can
be aggregated or not. The difference to the third approach (Fig. 1(c)) is more subtle. In both
approaches, each of the � sample sets can only contain 4���� samples. The belief state that
is propagated by RTPF to the next estimation interval is a mixture distribution where each
mixture component is represented by one of the � sample sets, all generated independently
from the previous window. Thus, the belief state propagation is simulated by �
"$# sample tra-
jectories, that for computational convenience are represented at the points in time where the
observations are integrated. In the approach (c) however, the belief propagation is simulated
with only 4���� independent samples.

We will now show how RTPF determines the weights of the mixture belief. The key idea is
to choose the weights that minimize the KL-divergence between the mixture belief and the
optimal belief. The optimal belief is the belief we would get if there was enough time to
compute the full posterior within the update window.

3.1 Mixture representation

Let us restrict our attention to one estimation interval consisting of � observations. The opti-
mal belief �1�%�����!� ��� ��� � at the end of an estimation window results from iterative application
of the Bayes filter update on each obseration [3]:

�1�%� ���!� ��� ��� �

�
$�$ $
� �
*�� �

� ��� �
�� � �
	��� ��� �
 � � �

	����	���

	�� � �1���	��� ��
 � " � ��
#$ $�$ " � ��� 	�� $ (2)

Here ����� ��� ��
�� denotes the belief generated in the previous estimation window. In essence,
(2) computes the belief by integrating over all trajectories through the estimation interval,
where the start position of the trajectories is drawn from the previous belief �1���	�����
�� . The
probability of each trajectory is determined using the control information � �
 � � � ����$�$ $�� � ��� 	�� ,
and the likelihoods of the observations � ���%��$ $�$ � � ��� along the trajectory. Now let �1��� * �
� ��� �denote the belief resulting from integrating only the ��� ��� observation within the estimation
window. RTPF computes a mixture of � such beliefs, one for each observation. The mixture,
denoted �1���
� *�� ��� � � ��� � , is the weighted sum of the mixture components ����� * ��� � � � , where� denotes the mixture weights:

����� � *�� ��� ��� ��� � 3
 �
*�� �
� * �1�%� * ��� ��� �

 �
*�� �
� *
�
$�$ $
�
� �
�%�
�� � �
	�

 �
� � �

� ��� � �%� � � ��	����	� � ��	��!� �����	�
� �
 ��" � �
�$.$.$ " � ��� 	�� $ (3)

where � *���� and � * � * 3 � . Here, too, we integrate over all trajectories. In contrast to
(2), however, each trajectory selectively integrates only one of the � observations within the
estimation interval1.

3.2 Optimizing the mixture weights

We will now turn to the problem of finding the weights of the mixture. These weights reflect
the “importance” of the respective observations for describing the optimal belief. The idea is
to set them so as to minimize the approximation error introduced by the mixture distribution.
More formally, we determine the mixing weights �"! by minimizing the KL-divergence [5]
between ����� � *#� and ��������� � .

� ! 3 $&%('�)+*#,-/.�0 132 �
�1��� � *#� �!" �4� ���.� �1�%�����!� � (4)

3 $&%('�)+*#,-/.�0
�
����� � *�� ��� ��� ��� � ��576

�����
� *#� ��� ��� �4� ����������!� �
� ��� � " � ��� $ (5)

In the above 8 3:9 � � �
*#� � � * 3;� �<� * �=�?> . Optimizing the weights of mixture

approximations can be done using EM [6] or (constrained) gradient descent [7]. Here, we
perform a small number of gradient descent steps to find the mixture weights. Denote by

1Note that typically the individual predictions ����� � � �$� � ��	������ � ��	�� � can be “concatenated” so that
only two predictions for each trajectory have to be performed, one before and one after the correspond-
ing observation.

� � � � the criterion to be minimized in (5). The gradient of
� � � � is given by

� �
� � *

3
� �

� � *
�����
� *�� ��� ���	� � ����� ' �����
� *�� ��� ���	� � � �

�
� � *

�����
� *#� ��� ��� � � ����� ' ����� ���!� �
� ��� �
3 �	�

�
����� * ��� ��� �
��� '

�1��� � *#� �
� ��� � � ������ ��� � �
� ��� � " � ��� � � 3 � ��$ $�$ � $ (6)

The start point ��� for the gradient descent is chosen to be the center of the weight domain 8 ,
that is � � 3�
 � � $ $�$ � ���� .

3.3 Monte Carlo gradient estimation

The exact computation of the gradients in (6) requires the computation of the different be-
liefs, each in turn requiring several particle filter updates (see (2), (3)), and integreation over
all states � ��� . This is clearly not feasible in our case. We solve this problem by Monte Carlo
approximation. The approach is based on the observation that the beliefs in (6) share the same
trajectories through space and differ only in the observations they integrate. Therefore, we
first generate sample trajectories through the estimation window without considering the ob-
servations, and then use importance sampling to generate the beliefs needed for the gradient
estimation. Trajectory generation is done as follows: we draw a sample � ��� � from a sample
set of the previous mixture belief, where the probability of chosing a set &)����� � is given by the
mixture weights � � . This sample is then moved forward in time by consecutively drawing
samples � �
 from the distributions � ��� �
 � � �
�	����	���

	��!� at each time step � * � � 3 � ��$�$ $ � .
The resulting trajectories are drawn from the following proposal distribution � :

� ��� � � � 3
�
$�$ $
� �
*�� �

� �
� �
 � � �
�	���� � �
�	�� � ����� ��� ��
 �#" � ��
#$�$ $ " � � � 	�� (7)

Using importance sampling, we obtain sample-based estimates of ����� * and �1�������!� by simply
weighting each trajectory with � �
���
 � � �
	� or � � � � � �
�%� � � � � � � , respectively (compare
(2) and (3)). �1���
� *#� is generated with minimal computational overhead by averaging the
weights computed for the individual ����� * distributions. The use of the same trajectories for
all distributions has the advantage that it is highly efficient and that it reduces the variance
of the gradient estimate. This variance reduction is due to using the same random bits in
evaluating the diverse scenarios of incorporating one or another of the observations [8].

Further variance reduction is achieved by using stratified sampling on trajectories. The tra-
jectories are grouped by determining connected regions in a grid over the state space (at time
� �). Neighboring cells are considered connected if both contain samples. To compute the
gradients by formula (6), we then perform summation and normalization over the grouped
trajectories. Empirical evaluations showed that this grouping greatly reduces the number of
trajectories needed to get smooth gradient estimates. An additional, very important benefit
of grouping is the reduction of the bias due to different dynamics applied to the different
sample sets in the estimation window. In our experiments the number of trajectories is less
than ��� of the total number of samples, resulting in a computational overhead of about 1%
of the total estimation time.

To summarize, the RTPF algorithm works as follows. The number 4 of independent samples
needed to represent the belief, the update rate of incoming sensor data, and the available
processing power determine the size � of the estimation window and hence the number of
mixture components. RTPF computes the optimal weights of the mixture distribution at the
end of each estimation window. This is done by gradient descent using the Monte Carlo esti-
mates of the gradients. The resulting weights are used to generate samples for the individual
sample sets of the next estimation window. To do so, we keep track of the control information
(dynamics) between the different sample sets of two consecutive windows.

54m

18
m

Fig. 3: Map of the environment used for the experiment. The robot was moved around the symmetric
loop on the left. The task of the robot was to determine its position using data collected by two distance
measuring devices, one pointing to its left, the other pointing to its right.

4 Experiments

In this section we evaluate the effectiveness of RTPF against the alternatives, using data
collected from a mobile robot in a real-world environment. Figure 3 shows the setup of
the experiment: The robot was placed in the office floor and moved around the loop on the
left. The task of the robot was to determine its position within the map, using data collected
by two laser-beams, one pointing to its left, the other pointing to its right. The two laser
beams were extracted from a planar laser range-finder, allowing the robot only to determine
the distance to the walls on its left and right. Between each observation the robot moved
approximately 50cm (see [3] for details on robot localization and sensor models). Note that
the loop in the environment is symmetric except for a few “landmarks” along the walls of
the corridor. Localization performance was measured by the average distance between the
samples and the reference robot positions, which were computed offline.

In the experiments, our real-time algorithm, RTPF, is compared to particle filters with skip-
ping observations, called “Skip data” (Figure 1a), and particle filters with insufficient sam-
ples, called “Naive” (Figure 1c). Furthermore, to gauge the efficiency of our mixture weight-
ing, we also obtained results for our real-time algorithm without weighting, i.e. we used
mixture distributions and fixed the weights to � � � . We denote this variant “Uniform”. Fi-
nally, we also include as reference the “Baseline” approach, which is allowed to generate 4
samples for each observation, thereby not considering real-time constraints.

The experiment is set up as follows. First, we fix the sample set size 4 which is sufficient
for the robot to localize itself. In our experiment 4 is set empirically to 20,000 (the particle
filters may fail at lower 4 , see also [2]). We then vary the computational resources, resulting
in different window sizes � . Larger window size means lower computational power, and the
number of samples that can be generated for each observation decreases to (4�� �).

Figure 4 shows the evolutions of average localization errors over time, using different win-
dow sizes. Each graph is obtained by averaging over 30 runs with different random seeds
and start positions. The error bars indicate 95% confidence intervals. As the figures show,
“Naive” gives the worst results, which is due to insufficient numbers of samples, resulting in
divergence of the filter. While “Uniform” performs slightly better than “Skip data”, RTPF is
the most effective of all algorithms, localizing the robot in the least amount of time. Further-
more, RTPF shows the least degradation with limited computational power (larger window
sizes). The key advantage of RTPF over “Uniform” lies in the mixture weighting, which
allows our approach to focus computational resources on valuable sensor information, for
example when the robot passes an informative feature in one of the hallways. For short
window sizes (Fig. 4(a)), this advantage is not very strong since in this environment, most
features can be detected in several consecutive sensor measurements. Note that because the
“Baseline” approach was allowed to integrate all observations with all of the 20,000 samples,
it converges to a lower error level than all the other approaches.

0

200

400

600

800

1000

0 50 100 150 200 250 300 350 400 450

A
ve

ra
ge

 L
oc

al
iz

at
io

n
er

ro
r

[c
m

]

Time [sec]

Baseline
Skip data

RTPF
Naive

Uniform

(a)
0

200

400

600

800

1000

0 50 100 150 200 250 300 350 400 450

A
ve

ra
ge

 L
oc

al
iz

at
io

n
er

ro
r

[c
m

]

Time [sec]

Baseline
Skip data

RTPF
Naive

Uniform

(b)

0

200

400

600

800

1000

0 50 100 150 200 250 300 350 400 450

A
ve

ra
ge

 L
oc

al
iz

at
io

n
er

ro
r

[c
m

]

Time [sec]

Baseline
Skip data

RTPF
Naive

Uniform

(c)

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

2 4 6 8 10 12 14

Lo
ca

liz
at

io
n

sp
ee

du
p

Window size (d)

Fig. 4(a)-(c): Performance of the different algorithms for window sizes of 4, 8, and 12 respectively.
The � -axis represents time elapsed since the beginning of the localization experiment. The � -axis plots
the localization error measured in average distance from the reference position. Each figure includes
the performance achieved with unlimited computational power as the “Baseline” graph. Each point
is averaged over 30 runs, and error bars indicate 95% confidence intervals. Fig. 4(d) represents the
localization speedup of RTPF over “Skip data” for various window sizes. The advantage of RTPF
increases with the difficulty of the task, i.e. with increasing window size. Between window size 6 and
12, RTPF localizes at least twice as fast as “Skip data”.

Without mixture weighting of RTPF, we did not expect “Uniform” to outperform “Skip data”
significantly. To see this, consider one estimation window of length � . Suppose only one of
the � observations detects a landmark, or very informative feature in the hallway. In such
a situation, “Uniform” considers this landmark every time the robot passes it. However, it
only assigns 4�� � samples to this landmark detection. “Skip data” on the other hand, detects
the landmark only every � -th time, but assigns all 4 samples to it. Therefore, averaged over
many different runs, the mean performance of “Uniform” and “Skip data” is very similar.
However, the variance of the error is significantly lower for “Uniform” since it considers
the detection in every run. In contrast to both approaches, RTPF detects all landmarks and
generates more samples for the landmark detections, thereby gaining the best of both worlds,
and Figures 4(a)–(c) show this is indeed the case.

In Figure 4(d) we summarize the performance gain of RTPF over “Skip data” for different
window sizes in terms of localization time. We considered the robot to be localized if the
average localization error remains below 200 cm over a period of 10 seconds. If the run
never reaches this level, the localization time is set to the length of the entire run, which is
574 seconds. The � -axis represents the window size and the � -axis the localization speedup.
For each window size speedups were determined using � -tests on the localization times for
the 30 pairs of data runs. All results are significant at the 95% level. The graph shows that
with increasing window size (i.e. decreasing processing power), the localization speedup
increases. At small window sizes the speedup is 20-50%, but it goes up to 2.7 times for
larger windows, demonstrating the benefits of the RTPF approach over traditional particle
filters. Ultimately, for very large window sizes, the speedup decreases again, which is due to
the fact that none of the approaches is able to reduce the error below 200cm within the run
time of an experiment.

5 Conclusions

In this paper we tackled the problem of particle filtering under the constraint of limited com-
puting resources. Our approach makes near-optimal use of sensor information by dividing
sample sets between all available observations and then representing the state as a mixture of
sample sets. Next we optimize the mixing weights in order to be as close to the true posterior
distribution as possible. Optimization is performed efficiently by gradient descent using a
Monte Carlo approximation of the gradients.

We showed that RTPF produces significant performance improvements in a robot localization
task. The results indicate that our approach outperforms all alternative methods for dealing
with limited computation. Furthermore, RTPF localized the robot more than 2.7 times faster
than the original particle filter approach, which skips sensor data. Based on these results, we
expect our method to be highly valuable in a wide range of real-time applications of particle
filters. RTPF yields maximal performance gain for data streams containing highly valuable
sensor data occuring at unpredictable time points.

The idea of approximating belief states by mixtures has also been used in the context of
dynamic Bayesian networks [9]. However, Boyen and Koller use mixtures to represent belief
states at a specific point in time, not over multiple time steps. Our work is motivated by
real-time constraints that are not present in [9].

So far RTPF uses fixed sample sizes and fixed window sizes. The next natural step is to adapt
these two “structural parameters” to further speed up the computation. For example, by the
method of [2] we can change the sample size on-the-fly, which in turn allows us to change the
window size. Ongoing experiments suggest that this combination yields further performance
improvements: When the state uncertainty is high, many samples are used and these samples
are spread out over multiple observations. On the other hand, when the uncertainty is low,
the number of samples is very small and RTPF becomes identical to the vanilla particle filter
with one update (sample set) per observation.

6 Acknowledgements
This research is sponsored in part by the National Science Foundation (CAREER grant num-
ber 0093406) and by DARPA (MICA program).

References
[1] A. Doucet, N. de Freitas, and N. Gordon, editors. Sequential Monte Carlo in Practice. Springer-

Verlag, New York, 2001.
[2] D. Fox. KLD-sampling: Adaptive particle filters and mobile robot localization. In Advances in

Neural Information Processing Systems (NIPS), 2001.
[3] D. Fox, S. Thrun, F. Dellaert, and W. Burgard. Particle filters for mobile robot localization. In

Doucet et al. [1].
[4] P. Del Moral and L. Miclo. Branching and interacting particle systems approximations of feynam-

kac formulae with applications to non linear filtering. In Seminaire de Probabilites XXXIV, number
1729 in Lecture Notes in Mathematics. Springer-Verlag, 2000.

[5] T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley Series in Telecommunica-
tions. Wiley, New York, 1991.

[6] W. Poland and R. Shachter. Mixtures of Gaussians and minimum relative entropy techniques
for modeling continuous uncertainties. In Proc. of the Conference on Uncertainty in Artificial
Intelligence (UAI), 1993.

[7] T. Jaakkola and M. Jordan. Improving the mean field approximation via the use of mixture distri-
butions. In Learning in Graphical Models. Kluwer, 1997.

[8] P. R. Cohen. Empirical methods for artificial intelligence. MIT Press, 1995.
[9] X. Boyen and D. Koller. Tractable inference for complex stochastic processes. In Proc. of the

Conference on Uncertainty in Artificial Intelligence (UAI), 1998.

