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Abstract

Cortical synaptic plasticity depends on the relative timing of pre- and
postsynaptic spikes and also on the temporal pattern of presynaptic spikes
and of postsynaptic spikes. We study the hypothesis that cortical synap-
tic plasticity does not associate individual spikes, but rather whole fir-
ing episodes, and depends only on when these episodes start and how
long they last, but as little as possible on the timing of individual spikes.
Here we present the mathematical background for such a study. Stan-
dard methods from hidden Markov models are used to define what “fir-
ing episodes” are. Estimating the probability of being in such an episode
requires not only the knowledge of past spikes, but also of future spikes.
We show how to construct a causal learning rule, which depends only
on past spikes, but associates pre- and postsynaptic firing episodes as if
it also knew future spikes. We also show that this learning rule agrees
with some features of synaptic plasticity in superficial layers of rat visual
cortex (Froemke and Dan, Nature 416:433, 2002).

1 Introduction

Cortical synaptic plasticity agrees with the Hebbian learning principle: Neurons that fire
together, wire together. But many features of cortical plasticity go beyond this simple
principle, such as the dependence on spike-timing or the nonlinear dependence on spike
frequency (see [1] or [2] for review). Studying these features may produce a better under-
standing of which neurons wire together in the neocortex.

Previous models of cortical synaptic plasticity [3]-[5] differed in their details, but they
agreed that nonlinear learning rules are needed to model cortical plasticity. In linear learn-
ing rules, the weight change induced by a presynatic spike would depend only on the post-
synaptic spikes, but not on all the other presynaptic spikes. In the cortex, by contrast, the
contribution from a presynaptic spike is stronger when it occurs alone than when it oc-
curs right after another presynaptic spike [5]. Similar results hold for postsynaptic spikes.
Consequently, the weight change depends in a complex way on the whole temporal pattern
of pre- and postsynaptic spikes. Even though this nonlinear dependence can be modeled
phenomenologically [3]-[5], its biological function remains unknown. We will not pro-
pose such a function here, but reduce this complex dependence to a few principles, whose
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Figure 1: A: Usually, models of cortical synaptic plasticity associate pre- and postsynaptic
spikes directly. They produce long-term potentiation (LTP) when the presynaptic spike
(pre) precedes the postsynaptic spike (post), and long-term depression (LTD) if the order is
reversed. When several pre- and postsynaptic spikes are interleaved in time, the outcome
depends in a complicated way on the whole spike pattern (LTP or LTD). B: In our model,
pre- and postsynaptic spikes are paired only indirectly. Each spike train is used to estimate
when firing episodes start and end. C: These firing episodes are then associated, with LTP
being induced if the presynaptic firing episode starts before the postsynaptic one and LTD
if the order is reversed and if the episodes are short. D: Hidden Markov model used to
estimate when firing episodes occur.

function may be easier to understand in future studies.

2 Basiclearning principle

The basic principle behind our model is illustrated in fig. 1. We propose that the learning
rule does not associate pre- and postsynaptic spikes directly, but rather uses them to esti-
mate whether the pre- or postsynaptic neuron is currently in a period of rapid firing (*firing
episode’) or a period of little or no firing. It then associates the firing episodes. When
the per- and postsynaptic firing episodes overlap, the synapse is strengthened or weakened
depending on which one started first, but independent of the precise temporal patterns of
spikes within a firing episode. As a consequence, the contribution of each spike to synaptic
plasticity will depend on whether it occurs alone, or surrounded by other spikes, and the
learning rule will be nonlinear. For the right parameter choice, the nonlinear features of
this rule will agree well with nonlinear features of cortical synaptic plasticity.

Implementation of this rule will be done in two steps. Firstly, we will define what "firing
episodes” are. Secondly, we will associate the pre- and postsynaptic firing episodes. The
first step uses standard methods from hidden Markov models (see e.g. [6]). The pre- and
postsynaptic neuron will each be described by a Markov model with three states (fig. 1D),
which correspond to firing episodes (state 2; firing probability e5(1) > 0), to the silence
between responses (state O; firing probability eq(1) = 0), and to the first spike of a new
firing episode (state 1; firing probability e; (1) = 1; duration = 1 time step). As usual,
the parameters of the Markov model are the transition probabilities a;, which determine
how long firing episodes and silent periods are expected to last, and the emission rates
e;(z;), which determine the firing rates. z; is the binary observable at time step ¢ (z; = 1
at spikes and z; = 0 otherwise), e;(1) is the firing probability per time step in state /,
and €;(0) = 1 — ¢;(1). In general, the pre- and postsynaptic neuron will have different
parameters ¢;(x) and ay;.



Once the Markov model is defined, one can use standard algorithms (forward and backward
algorithm) to estimate, for any given spike sequence, the state probabilities over time. To
model cortical synaptic plasticity, we will increase the synaptic weight whenever the pre-
and the postsynaptic neuron have simultaneous firing episodes (both in state 2), and de-
crease the weight whenever the postsynaptic firing episode starts first (pre in state 1 while
post already in state 2):

A+ for ﬂ_pre -9 7_[_post -9
i » g
Aw(ﬂ_fre’ﬂ_fost) — —A—  for ﬂ_gﬂ‘e — 17 7_rg:vost —9 (1)
0 otherwise

where ATand A~ are the amplitudes of synaptic potentiation and depression. In general,
the states are not known with certainty, only their probabilities are, and the actual weight
change is therefore defined as:
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where the sum is over all possible pre- and postsynaptic states and P(...|x) is the probability
given the whole spike sequence x4, x2, 3, .... Asfig. 2 shows, this straightforward learning
rule produces weight changes that are similar to those seen in cortex [5]. (One can show
that this particular Markov model depends on the parameters a and e only through the two
combinations 7 = dt/(e2(1) + a20 — ao1) and g = dt - e2(1)/ (a0 - ao1) Where dt is the
time step. To fit the data on spike pairs and triplets [5], we set 7P7¢ = 15ms, 7P°5* = 34ms,
puPe = 20ms, uPost = 70ms, At = 96Hz-dt, and A~ = 1.5.)

This learning rule is, however, not biologically plausible, because it violates causality. The
estimates of state probabilities depend not only on past, but also on future observables,
while real synaptic plasticity can depend only on past spikes. To solve this causality prob-
lem, we will rewrite the learning rule, essentially deriving a new algorithm in place of the
familiar hidden Markov algorithms. We will derive this causal learning rule not only for
this specific 3-state model, but for general Markov models.

3 General form of thelearning rule

3.1 Learninggoal

To derive the general form of the learning rule for arbitrary pre- and postsynaptic Markov
models, we assume that the transition probabilities ax; and emission probabilities e;(z;)
are given and that the weight change is some function

Aw (77¢, 7% ) ®3)
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of the pre- and postsynaptic states ; at time ¢ and the time 4 itself. If the pre- and postsy-
naptic state sequences 7P"¢ and wP°%t were known, the weight w; at time i would simply
be the initial weight wq plus all the previous weight changes:

1
w; [ﬂ-l’re’ﬂ.pre] = wg + Z Aw (7_‘_;_)7'677_‘_;_)031‘,7]-) (4)
7j=1
In the current context, the state sequences are unknown and have to be estimated from the
spike trains zP™¢ and zP°%t. Ideally, we would like to set the weight at time 4 equal to the
expectation value of w; [7P"¢, 7Pot], given the spike trains zP"¢ and z?°5t. But only part of
these spike trains are known at time 4. Of the sequence zP"¢ the synapse has already seen

the past values 1", 25" ... 2™, which we will call 2™, and the present value z¥"¢. But
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Figure 2: Weight change produced by spike triplets in various models. Our learning rule
(second column), which depends on the timing of firing episodes but only weakly on the
timing of individual spikes, and which was implemented using hidden Markov models,
agrees well with the phenomenological model (first column) that was used in [5, fig 3b]
to fit data from superficial layers in rat visual cortex. It certainly agrees better than a
purely linear rule (third column). Parameters were set so that all three models produce the
same results for spike pairs (1 presynaptic and 1 postsynaptic spike). Upper row: Weight
change produced by 2 presynaptic and 1 postsynaptic spikes (2/1 triplet). Lower row: 1
presynaptic and 2 postsynaptic spikes (1/2 triplet). #1 and ¢2 are the times between pre-
and postsynaptic spikes. The small boxes on the right show examples of spike patterns for
positive and negative ¢, and ¢

pre _pre pre

it has not yet seen the future sequence =;,;, ;. 5, ..., which we will call z”". All one can
do is to make some assumption about WFat the future spikes will be, set w; accordingly,
and correct w; in the future, when the real spike sequence becomes known. Our algorithm
assumes no future spikes and sets the weight at time 4 equal to:

w; = E {wi [,n-IJre7 ,n_pre] | wg_re — O’xfre, :L_Zire, l’g_OSt — 0,$€05t, SL'IiOSt} (5)

where E(...|z} is the expectation value given the spike sequences x. The condition that
all future spikes are 0 is written as z}™° = 0 and :cﬁ“t = (. One could make other
assumptions about the future spikes, but all these assumptions would affect only when
the weight changes, but not how much it changes in the long run. This is because the

expectation value of a past weight change:

E { Aw (7T§)Te,7T§)OSt,j) | xire’ x;;)re’ xzire,xiost’wfost’xziost} (6)
will depend little on the future spikes 5™ and 2%°%, if the time j is much earlier than the

time 4. As ¢ grows, most weight changes will lie in the distant past and depend only weakly
on our assumptions about future spikes.

Next we will show how to compute the expectation value in eq. (5) without having to store
the past spike trains z_. To simplify the notation, we will regard each pair of pre- and



postsynaptic states (72" ”"St) as a state 7; of a combined pre- and postsynaptic Markov

i 0™
model. We will also combine the pre- and postsynaptic spikes (%", m§03t), each of which

can take the two values 0 or 1, to a single observable z;, which can'take 4 values. The
desired weight is then equal to:

wi,=E{w;[7]| 24 =0, z;, z_} with w;[r] =wp —I—EAw (m5,5)  (7)
7j=1

3.2 Running estimate of state probabilities

To compute w;, it is helpful to first compute the probabilities
q(i) =P(m=1] 24 =0, z;, 3_) 8

of the states given the past and present spikes and assuming that there are no future spikes.
The ¢;(¢) can be computed recursively, in terms of g (¢ — 1) (this is similar to the familiar
forward algorithm for hidden Markov models). Write ¢ as:

ql(z) = ZP(,’Q =1 y Ti—1 = kl Ty = 0, z;, .’L'_) (9)
k

Z P(zy =0, 2, m;=1,m-1 =k, z_)/P(zy =0, z;, xz_) (10)
k
Because of the Markov property, future and present spikes z_and z; depend only on the

present state 7;, but not on the past state ;1 or on z_. Similarly, 7; depends only on ;4
but not on z_. Thus the enumerator of the last expression is equal to:

P(SL'+:0| Wz:l)P(.CEz| Wz:l)P(ﬂ'z:” Wi_lzk)'P(Tl'i_lzk, IL'_) (11)
=o(i) - el(xi) -ap - P(mi1 =k, x) (12)
with 0(i) = P(z4 =0]| m =1) (13)

The probabilities o;(7) of having no future spikes after state [ can be computed by the
backward algorithm:

o (i) = ZP($+ =0, my1=h|m=I)= Zoh(i+ 1) -en(0) - arn (14)
7 7

This is a linear equation with constant coefficients. As long as the end of the Markov chain
is far enough in the future, this equation reduces to an eigenvalue problem with the solution
01(i) = X-0;(i+1), where X is the largest eigenvalue of the matrix with elements ey, (0) - a;p,
and o is the corresponding eigenvector. As the matrix elements are positive, A will be real,
and the eigenvector will be unique up to a constant factor (except for quite exceptional,
disconnected Markov chains, in which it may depend on the choice of end state). The
last unknown factor in eq. (12) is P (w;—1 = k, x_), which can be expressed in terms of
qr (7, - 1):

P(,’rifl = k7 (E,) = qk(l_l) P(.Z’+ =0,z =0, .CL',)/P(Z'_F =0,z = 0| Ti—1 = k)

(15)
where the Markov property was used again. Putting everything together, one gets the update
rule for ¢;(¢):

@(i) =Y mu (@i o) - q(i —1) (16)
k

with  mp (z;,2-) = n(z;,z-)-e(z;) - aw - 01(i)/op(i — 1) (17)
n(z,z-) = Pzy=0,2,=0,2_)/P(zy =0, 2;, z_) (18)



The ratio 0;(i)/or(i — 1) = o01(i)/ (A - or(i)) does not really depend on i but only on
the eigenvalue A and the relative size of the elements of the eigenvector o. If there is no
pre- or postsynaptic spike at time ¢ (z; = 0), the normalization factor n (z;,z_) is equal
to 1, and my; no longer depends on ¢ or z_. In this case, eq. (16) is a linear equation
with constant coefficients, which can be integrated analytically from one spike to the next,
thereby speeding up the numerical simulation. At pre- or postsynaptic spikes (z; # 0), n
can be computed by summing eq. (16) over I and using >, ¢;(i) = 1:

n(z;,r_) = (Z qr(i — 1) - er(x;) - apr - 01(3) [ op (i — 1)) (19)

Lk

3.3 Running estimate of weights

Using the knowledge of the probabilities ¢;(z), one can now compute the weight
wi = E{wi[r]| 2y =0, 2, 2} (20)

= E{wii[n]| 2y =0, 2, z_} + > Aw(l,i)- q(i) (21)
1

The expectation value E {w;_1 [7] | = } in this equation will be equal to w;_1, if there is
no pre- or postsynaptic spike at time 4 (z; = 0). In between spikes, the weight therefore
changes as:

Wi = wi—1 + Z Aw (1,4) - q (i) (22)

l

At the time of spikes, the weight change is more complex, because earlier weight changes
have to be modified according to the new state information given by the spikes. To compute
it, let us introduce the quantities

w (i) = @) - E{wi[n]| 24+ =0, x5, mi =1, 2} (23)
The weight is equal to the sum of these u:
w; =Y w(i) (24)
l

and, as we will see next, the u;(¢) can be computed in a recursive way, even in the presence
of spikes. Start with;

w(@) = q@)-(Aw )+ E{wi—1[7]| 24 =0, 25, m; =1, x_}) (25)

= Aw (l,l) -ql(i) + ZP(7Q;1 = k| Ty = O, Tjy, T3 = l, .’L',) -ql(i) -
k
'E{U)z’_l [7'['] | Ty = 0, Tjy T3 = l, Ti—1 — k, ZU_} (26)

Because of the Markov property, the last expectation value depends only on z _ and k, but
not on z;, I, or z, and it is thus equal to uy (¢ — 1) /g (¢ — 1). The other two factors

P(mia=klzy=0,2;, mi =1, 2 )qi)=P(m=1,m1=k| 2y =0, z;, E’L%

27
combine to give the same expression that already occurred in equation (9). As shown above
(eq. (16)), this expression is equal to

M (.’L‘i, SLL) - qk(i - 1) (28)
with the same my; as before. Putting everything together, one gets the update rule for u;(7):

w (i) = Aw (1,4) - (i) + kal (ziyx_) -up(i — 1) (29)



Together with egs. (16), (17), (19), and (24) this constitutes our learning rule. It is causal,
because it depends only on past, not on future signals, but in the long run it will give the
same weight change as the standard hidden Markov rule (2). In between spikes, the ¢ in
eg. (16) and the u in eq. (29) evolve according to linear rules, and the weight changes
according to the simple rule (22). These simplifications are a consequence of assuming, in
the definition of w;, that there are no future spikes. Other assumptions are possible: One
could, for example, set w; equal to w; = E {w; [7] | x;, «—}, assuming that future spikes
occur with the rate predicted by the Markov model, and one could also derive a causal
learning rule for this w; (not shown), but then the evolution of ¢ and u between spikes
would be nonlinear and the evolution of w would also be more complex.

This learning rule still has a rather unusual form. Usually, one writes w; as the sum of w; 1
plus some weight change. Our rule can also be written in this form, if the v are replaced

by:

di(i) = w(@)—q(@)- w (30)
q(@) (E{w;[r]|z4+=0,2z;,mi=lL,x_} — E{w;[r]| 24 = 0,z;,z_})31)
d;(7) is ameasure for how much the weight should be changed if one suddenly learned, with

certainty, that the neurons are in state /. By definition, the d sum to zero: }~, d;(i) = 0.
Inserting the update rule for u; (%) gives the update rule for d; (i):

dii) = (Aw (i) —w)q(i +kal wg, o) (de(i — 1) + qr(i — Dw;—1)(32)

= (Aw (i) —w; +w; 1) +kal Tiw) - dp(i — 1) (33)

Summing over [ gives the update rule for w;:

wi = w1+ Y Aw (l,4) - qi +ka1 i, @) - di(i — 1) (34)
!

The last, d-dependent sum is nonzero only if spikes arrive. It occurs because a new spike
changes the probability estimates of previous states, and thereby the desired weight.

3.4 Summary of thelearning algorithm

To simplify notation, we combined the pre- and postsynaptic Markov models into a single
one. How does the learning rule look in terms of the original pre- and postsynaptic param-
eters? If the presynaptic model has NP"¢ states and the postsynaptic one NP°st, then the
combined model has NPm¢ . NPest states. At each time step, we have to update not only
the weight w; but N*™¢ - NP5t signal traces d, which we will now write as d (i), where
g denotes the presynaptic and k the postsynaptic state. However, one needs to update only
NPre 1 NPost of the signal traces g, because they factorize into a pre- and a postsynaptic
part: qg (i) = gk (4) - q2°** (4). The learning algorithm is then given by:
e Initialization (: = 0): Define the states and the parameter e and a of the pre- and

postsynaptic Markov model.

Define the weight change Aw (7", mPost i) for all possible state pairs.

Find the leading eigenvector o of both Markov chains in the absence of spikes:

pre pTe pre pre
A E ey ~ap, oy (35)

Initialize w, d, and ¢ (w = wo; d = 0; ¢ = 1 for arbitrary start state and 0
otherwise)



e Recursion (i =1,2,...):

-1
np,,.e — (Z qi:)re . e%?TE(:EfT'G) . ai:)’lf'e . 0%)7'6/ ()\p"'e . OZT€)> (36)
ki

mi’;‘e — npre . e;)‘l‘e (mg.)’l‘e) . ai})‘;‘e . 0;)7‘6/ ()\p're . 02)7‘6) (37)

qlpre «— Zm%'e X qﬁre (38)
k
and analogous equations for nPost, mP°st, and gPost.

dw = Y Aw(h,li)- g -+ )Y ml mb - dg (39)
h,l hil g,k
; pre _post pre post
dy < (Aw(h,1,i) —dw) - g™ - " + Y mPe - mbt - dgi (40)
9;k

w — w+dw (41)

e Terminate at the end of the spike sequences zP™¢ and zP°%t.

4 Conclusion

This demonstrates that the basic principle of associating not individual spikes, but whole
firing episodes, can be implemented in a causal learning rule, which depends only on past
signals. This rule does not have to store the time of all past spikes, but only a few signal
traces ¢ and d, and may thus be biologically plausible. For the right parameter choice,
it agrees well with some nonlinear features of cortical synaptic plasticity (fig. 2). This
does not imply that actual synaptic plasticity follows the same rule, but only that these
particular features are consistent with our basic principle. Based on the predictions of
this rule, one could design more precise experimental tests of whether cortical synaptic
plasticity associates individual spikes or whole firing episodes.
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